Back to Search Start Over

Flow strength of tantalum under ramp compression to 250GPa.

Authors :
Brown, J. L.
Alexander, C. S.
Asay, J. R.
Vogler, T. J.
Dolan, D. H.
Belof, J. L.
Source :
Journal of Applied Physics; 2014, Vol. 115 Issue 4, p1-15, 15p
Publication Year :
2014

Abstract

A magnetic loading technique was used to study the strength of polycrystalline tantalum ramp compressed to peak stresses between 60 and 250GPa. Velocimetry was used to monitor the planar ramp compression and release of various tantalum samples. A wave profile analysis was then employed to determine the pressure-dependence of the average shear stress upon unloading at strain rates on the order of 10<superscript>5</superscript> s<superscript>-1</superscript>. Experimental uncertainties were quantified using a Monte Carlo approach, where values of 5% in the estimated pressure and 9-17% in the shear stress were calculated. The measured deviatoric response was found to be in good agreement with existing lower pressure strength data as well as several strength models. Significant deviations between the experiments and models, however, were observed at higher pressures where shear stresses of up to 5GPa were measured. Additionally, these data suggest a significant effect of the initial material processing on the high pressure strength. Heavily worked or sputtered samples were found to support up to a 30% higher shear stress upon release than an annealed material. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00218979
Volume :
115
Issue :
4
Database :
Complementary Index
Journal :
Journal of Applied Physics
Publication Type :
Academic Journal
Accession number :
94302275
Full Text :
https://doi.org/10.1063/1.4863463