Back to Search Start Over

Propelinear 1-Perfect Codes From Quadratic Functions.

Authors :
Krotov, Denis S.
Potapov, Vladimir N.
Source :
IEEE Transactions on Information Theory; Apr2014, Vol. 60 Issue 4, p2065-2068, 4p
Publication Year :
2014

Abstract

Perfect codes obtained by the Vasil'ev–Schönheim construction from a linear base code and quadratic switching functions are transitive and, moreover, propelinear. This gives at least \exp (cN^2) propelinear 1-perfect codes of length N over an arbitrary finite field, while an upper bound on the number of transitive codes is \exp (C(N\ln N)^2^\vphantom)). [ABSTRACT FROM PUBLISHER]

Details

Language :
English
ISSN :
00189448
Volume :
60
Issue :
4
Database :
Complementary Index
Journal :
IEEE Transactions on Information Theory
Publication Type :
Academic Journal
Accession number :
94957034
Full Text :
https://doi.org/10.1109/TIT.2014.2303158