Back to Search
Start Over
Notes on the existence of unramified non-abelian p-extensions over cyclic fields.
- Source :
- Proceedings of the Japan Academy, Series A: Mathematical Sciences; Apr2014, Vol. 90 Issue 4, p67-70, 4p
- Publication Year :
- 2014
-
Abstract
- We study the inverse Galois problem with restricted ramifications. Let p and q be distinct odd primes such that p ≡ 1 mod q. Let E(p<superscript>3</superscript>) be the non-abelian group of order p<superscript>3</superscript> such that the exponent is equal to p, and let k be a cyclic extension over Q of degree q. In this paper, we study the existence of unramified extensions over k with the Galois group E(p<superscript>3</superscript>). We also give some numerical examples computed with PARI. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 03862194
- Volume :
- 90
- Issue :
- 4
- Database :
- Complementary Index
- Journal :
- Proceedings of the Japan Academy, Series A: Mathematical Sciences
- Publication Type :
- Academic Journal
- Accession number :
- 95697985
- Full Text :
- https://doi.org/10.3792/pjaa.90.67