Back to Search
Start Over
STABILITY AND MONOTONICITY FOR INTERACTIVE MARKOV CHAINS.
- Source :
- Journal of Mathematical Sociology; 1992, Vol. 17 Issue 2/3, p127, 17p
- Publication Year :
- 1992
-
Abstract
- In a Markov chain model of a social process, interest often centers on the distribution of the population by state. One question, the stability question, is whether this distribution converges to an equilibrium value. For an ordinary Markov chain (a chain with constant transition probabilities), complete answers are available. For an interactive Markov chain (a chain which allows the transition probabilities governing each individual to depend on the locations by state of the rest of the population), few stability results are available. This paper presents new results. Roughly, the main result is that an interactive Markov chain with unique equilibrium will be stable if the chain satisfies a certain monotonicity property. The property is a generalization to interactive Markov chains of the standard definition of monotonicity for ordinary Markov chains. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 0022250X
- Volume :
- 17
- Issue :
- 2/3
- Database :
- Complementary Index
- Journal :
- Journal of Mathematical Sociology
- Publication Type :
- Academic Journal
- Accession number :
- 9665707
- Full Text :
- https://doi.org/10.1080/0022250X.1992.9990103