Back to Search Start Over

Controlled Monte Carlo data generation for statistical damage identification employing Mahalanobis squared distance.

Authors :
Nguyen, Theanh
Chan, Tommy HT
Thambiratnam, David P
Source :
Structural Health Monitoring; Jul2014, Vol. 13 Issue 4, p461-472, 12p
Publication Year :
2014

Abstract

The use of Mahalanobis squared distance–based novelty detection in statistical damage identification has become increasingly popular in recent years. The merit of the Mahalanobis squared distance–based method is that it is simple and requires low computational effort to enable the use of a higher dimensional damage-sensitive feature, which is generally more sensitive to structural changes. Mahalanobis squared distance–based damage identification is also believed to be one of the most suitable methods for modern sensing systems such as wireless sensors. Although possessing such advantages, this method is rather strict with the input requirement as it assumes the training data to be multivariate normal, which is not always available particularly at an early monitoring stage. As a consequence, it may result in an ill-conditioned training model with erroneous novelty detection and damage identification outcomes. To date, there appears to be no study on how to systematically cope with such practical issues especially in the context of a statistical damage identification problem. To address this need, this article proposes a controlled data generation scheme, which is based upon the Monte Carlo simulation methodology with the addition of several controlling and evaluation tools to assess the condition of output data. By evaluating the convergence of the data condition indices, the proposed scheme is able to determine the optimal setups for the data generation process and subsequently avoid unnecessarily excessive data. The efficacy of this scheme is demonstrated via applications to a benchmark structure data in the field. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14759217
Volume :
13
Issue :
4
Database :
Complementary Index
Journal :
Structural Health Monitoring
Publication Type :
Academic Journal
Accession number :
96935745
Full Text :
https://doi.org/10.1177/1475921714521270