Back to Search Start Over

Wireless Power Transfer Using Class E Inverter With Saturable DC-Feed Inductor.

Authors :
Aldhaher, Samer
Luk, Patrick Chi-Kwong
Bati, Akram
Whidborne, James F.
Source :
IEEE Transactions on Industry Applications; Jul2014, Vol. 50 Issue 4, p2710-2718, 9p
Publication Year :
2014

Abstract

Resonant converters used as coil drivers in inductive links generally operate efficiently at optimum switching conditions for constant load values and ranges. Changes in load and range can shift the operation of the coil driver to a nonoptimum switching state which results in higher switching losses and reduced output power levels. This paper presents a method to adapt to variations in range for a Class E inverter used as a coil driver in a wireless power transfer (WPT) system based on inductive coupling. It is shown that by controlling the duty cycle of the inverter's switch and the value of its dc-feed inductance, the Class E inverter can be tuned to operate at optimum switching conditions as the distance between the coils of the WPT system changes. Mathematical analysis is presented based on a linear piecewise state-space representation of the inverter and the inductive link. Extensive experimental results are presented to verify the performed analysis and validity of the proposed tuning procedure. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00939994
Volume :
50
Issue :
4
Database :
Complementary Index
Journal :
IEEE Transactions on Industry Applications
Publication Type :
Academic Journal
Accession number :
97129683
Full Text :
https://doi.org/10.1109/TIA.2014.2300200