Back to Search Start Over

Highly anisotropic metasurface: a polarized beam splitter and hologram.

Authors :
Jun Zheng
Zhi-Cheng Ye
Nan-Ling Sun
Rui Zhang
Zheng-Ming Sheng
Shieh, Han-Ping D.
Jie Zhang
Source :
Scientific Reports; 10/3/2014, p1-7, 7p
Publication Year :
2014

Abstract

Two-dimensional metasurface structures have recently been proposed to reduce the challenges of fabrication of traditional plasmonic metamaterials. However, complex designs and sophisticated fabrication procedures are still required. Here, we present a unique one-dimensional (1-D) metasurface based on bilayered metallic nanowire gratings, which behaves as an ideal polarized beam splitter, producing strong negative reflection for transverse-magnetic (TM) light and efficient reflection for transverse-electric (TE) light. The large anisotropy resulting from this TE-metal-like/TM-dielectric-like feature can be explained by the dispersion curve based on the Bloch theory of periodic metal-insulator-metal waveguides. The results indicate that this photon manipulation mechanism is fundamentally different from those previously proposed for 2-D or 3-D metastructures. Based on this new material platform, a novel form of metasurface holography is proposed and demonstrated, in which an image can only be reconstructed by using a TM light beam. By reducing the metamaterial structures to 1-D, our metasurface beam splitter exhibits the qualities of cost-efficient fabrication, robust performance, and high tunability, in addition to its applicability over a wide range of working wavelengths and incident angles. This development paves a foundation for metasurface structure designs towards practical metamaterial applications. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20452322
Database :
Complementary Index
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
98704617
Full Text :
https://doi.org/10.1038/srep06491