Back to Search Start Over

Fossil shorelines at Corfu and surrounding islands deduced from erosional notches.

Authors :
Evelpidou, Niki
Karkani, Anna
Pirazzoli, Paolo A
Source :
Holocene; Nov2014, Vol. 24 Issue 11, p1565-1572, 8p, 9 Color Photographs, 4 Charts, 1 Map
Publication Year :
2014

Abstract

New geomorphological investigations along the coasts of Corfu, Othonoi, Paxoi, and Antipaxoi Islands allowed the identification of recent fossil shorelines. Former sea-level positions were deduced from sea-level indicators. A ‘modern’ tidal notch, submerged c. −20 cm, was observed in all studied islands. This notch is regarded to have been submerged by the global sea-level rise that occurred during the 19th and 20th centuries at a rate exceeding the possibilities of intertidal bioerosion. Its presence provides evidence that no vertical tectonic movements occurred since its formation. On Corfu, impacts of ancient earthquakes have left some marks of emergence at about ≥+130 ± 11, +110 ± 11, +65 ± 11, +40 ± 11, and +25 ± 11 cm, as well as marks of submergence at about −40 to −50, −85 ± 11, −120 ± 11, and −180 ± 11 cm. The emergence of +130 ± 11 cm, previously dated at about 790–400 cal. bc, was detected through erosion notches at various sites in the western part of Corfu and appears to continue even more west, at Othonoi Island. Tidal notches submerged at depths exceeding 0.4 m were observed in the northeastern part of the island and suggest the local occurrence of a sequence of four coseismic subsidences, with average vertical displacements of 40 cm, during at least the last few millennia. At Paxoi and Antipaxoi, Holocene vertical movements seem to have been mainly of subsidence. At Paxoi, the ‘modern’ notch was found at about −20 to −30 cm, while four more submerged tidal notches were distinguished at about −40 ± 11, −60 ± 11, −75 ± 11, and −90 ± 11 cm, while in Antipaxoi, three submerged tidal notches were distinguished at about −60 ± 11, −75 ± 11, and −120 ± 11 cm. [ABSTRACT FROM PUBLISHER]

Details

Language :
English
ISSN :
09596836
Volume :
24
Issue :
11
Database :
Complementary Index
Journal :
Holocene
Publication Type :
Academic Journal
Accession number :
98918257
Full Text :
https://doi.org/10.1177/0959683614544057