Back to Search Start Over

Adaptive STA-LTA with Outlier Statistics.

Authors :
Jones, Joshua P.
van der Baan, Mirko
Source :
Bulletin of the Seismological Society of America; Jun2015, Vol. 105 Issue 3, p1606-1618, 13p
Publication Year :
2015

Abstract

The most common approach to seismic triggering is to compare short-term averages (STA) with long-term averages (LTA) of transformed amplitudes. In recording environments where this technique is of limited use, hidden Markov models (HMMs) are increasingly used for statistical event detection and classification, but these require training data and are often susceptible to false positive detection errors. In this work, we introduce an adaptive STA-LTA triggering algorithm that uses STA and LTA of state probabilities defined by restricting an HMM to a two population model of outliers in background noise. Monte Carlo simulations of noise and synthetic events are used to investigate detector sensitivity using statistical properties of latent states. We compare our method with traditional STA-LTA triggering on real data recorded by a 12-station vertical borehole array near Hoadley gas field, Alberta, Canada. These tests suggest that our method is more accurate when dealing with closely spaced events and is less susceptible to false positive detection errors. When existing picking algorithms are adapted for HMM STA-LTA, the result is improvement in total picks, accuracy, and consistency. A narrow range of detection thresholds is optimal for a wide range of signal-to-noise ratios; this suggests HMM STA-LTA may be less sensitive to analyst parameter choices than even traditional STA-LTA. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00371106
Volume :
105
Issue :
3
Database :
Supplemental Index
Journal :
Bulletin of the Seismological Society of America
Publication Type :
Academic Journal
Accession number :
103252901
Full Text :
https://doi.org/10.1785/0120140203