Back to Search Start Over

Synthesis and characterization of citrate-based fluorescent small molecules and biodegradable polymers.

Authors :
Xie, Zhiwei
Kim, Jimin P.
Cai, Qing
Zhang, Yi
Guo, Jinshan
Dhami, Ranjodh S.
Li, Li
Kong, Bin
Su, Yixue
Schug, Kevin A.
Yang, Jian
Source :
Acta Biomaterialia; Mar2017, Vol. 50, p361-369, 9p
Publication Year :
2017

Abstract

Novel citric acid based photoluminescent dyes and biodegradable polymers are synthesized via a facile “one-pot” reaction. A comprehensive understanding of the fluorescence mechanisms of the resulting citric acid-based fluorophores is reported. Two distinct types of fluorophores are identified: a thiozolopyridine family with high quantum yield, long lifetime, and exceptional photostability, and a dioxopyridine family with relatively lower quantum yield, multiple lifetimes, and solvent-dependent band shifting behavior. Applications in molecular labeling and cell imaging were demonstrated. The above discoveries contribute to the field of fluorescence chemistry and have laid a solid foundation for further development of new fluorophores and materials that show promise in a diversity of fluorescence-based applications. Statement of Significance Photoluminescent materials are pivotal for fluorescence based imaging, labeling and sensing applications. Understanding their fluorescence mechanism is challenging and imperative. We develop a new class of citric acid-derived fluorescent materials in forms of polymers and small molecular dyes by a one-step solvent free reaction. We discovered two different classes of citric acid-derived fluorophores. A two-ring thiozolopyridine structure demonstrates strong fluorescence and exceptional resistance to photo-bleaching. A one-ring dioxopyridine exhibits relative weak fluorescence but with intriguing excitation and solvent-dependent emission wavelength shifting. Our methodology of synthesizing citric acid-derived fluorophores and the understanding on their luminescence are instrumental to the design and production of a large number of new photoluminescent materials for biological and biomedical applications. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
17427061
Volume :
50
Database :
Supplemental Index
Journal :
Acta Biomaterialia
Publication Type :
Academic Journal
Accession number :
121273079
Full Text :
https://doi.org/10.1016/j.actbio.2017.01.019