Back to Search Start Over

Commissioning and validation of commercial deformable image registration software for adaptive contouring.

Authors :
Jamema, Swamidas V.
Phurailatpam, Reena
Paul, Siji N.
Joshi, Kishore
Deshpande, D.D.
Source :
Physica Medica; Mar2018, Vol. 47, p1-8, 8p
Publication Year :
2018

Abstract

Purpose To report the commissioning and validation of deformable image registration(DIR) software for adaptive contouring. Methods DIR (SmartAdapt®v13.6) was validated using two methods namely contour propagation accuracy and landmark tracking, using physical phantoms and clinical images of various disease sites. Five in-house made phantoms with various known deformations and a set of 10 virtual phantoms were used. Displacement in lateral, anterio-posterior (AP) and superior-inferior (SI) direction were evaluated for various organs and compared with the ground truth. Four clinical sites namely, brain (n = 5), HN (n = 9), cervix (n = 18) and prostate (n = 23) were used. Organs were manually delineated by a radiation oncologist, compared with the deformable image registration (DIR) generated contours. 3D slicer v4.5.0.1 was used to analyze Dice Similarity Co-efficient (DSC), shift in centre of mass (COM) and Hausdorff distances Hf 95%/avg . Results Mean (SD) DSC, Hf 95% (mm), Hf avg (mm) and COM of all the phantoms 1–5 were 0.84 (0.2) mm, 5.1 (7.4) mm, 1.6 (2.2) mm, and 1.6 (0.2) mm respectively. Phantom-5 had the largest deformation as compared to phantoms 1–4, and hence had suboptimal indices. The virtual phantom resulted in consistent results for all the ROIs investigated. Contours propagated for brain patients were better with a high DSC score (0.91 (0.04)) as compared to other sites (HN: 0.84, prostate: 0.81 and cervix 0.77). A similar trend was seen in other indices too. The accuracy of propagated contours is limited for complex deformations that include large volume and shape change of bladder and rectum respectively. Visual validation of the propagated contours is recommended for clinical implementation. Conclusion The DIR algorithm was commissioned and validated for adaptive contouring. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
11201797
Volume :
47
Database :
Supplemental Index
Journal :
Physica Medica
Publication Type :
Academic Journal
Accession number :
128803450
Full Text :
https://doi.org/10.1016/j.ejmp.2018.01.013