Back to Search Start Over

Angiotensin II-Induced End-Organ Damage in Mice Is Attenuated by Human Exosomes and by an Exosomal Y RNA Fragment.

Authors :
Cambier, Linda
Giani, Jorge F.
Liu, Weixin
Ijichi, Takeshi
Echavez, Antonio K.
Valle, Jackelyn
Marbán, Eduardo
Source :
Hypertension (0194911X); Aug2018, Vol. 72 Issue 2, p370-380, 11p
Publication Year :
2018

Abstract

Hypertension often leads to cardiovascular disease and kidney dysfunction. Exosomes secreted from cardiosphere-derived cells (CDC-exo) and their most abundant small RNA constituent, the Y RNA fragment EV-YF1, exert therapeutic benefits after myocardial infarction. Here, we investigated the effects of CDC-exo and EV-YF1, each administered individually, in a model of cardiac hypertrophy and kidney injury induced by chronic infusion of Ang (angiotensin) II. After 2 weeks of Ang II, multiple doses of CDC-exo or EV-YF1 were administered retro-orbitally. Ang II infusion induced an elevation in systolic blood pressure that was not affected by CDC-exo or EV-YF1. Echocardiography confirmed that Ang II infusion led to cardiac hypertrophy. CDC-exo and EV-YF1 both attenuated cardiac hypertrophy and reduced cardiac inflammation and fibrosis. In addition, both CDC-exo and EV-YF1 improved kidney function and diminished renal inflammation and fibrosis. The beneficial effects of CDC-exo and EV-YF1 were associated with changes in the expression of the anti-inflammatory cytokine IL (interleukin)-10 in plasma, heart, spleen, and kidney. In summary, infusions of CDC-exo or EV-YF1 attenuated cardiac hypertrophy and renal injury induced by Ang II infusion, without affecting blood pressure, in association with altered IL-10 expression. Exosomes and their defined noncoding RNA contents may represent potential new therapeutic approaches for hypertension-associated cardiovascular and renal damage. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0194911X
Volume :
72
Issue :
2
Database :
Supplemental Index
Journal :
Hypertension (0194911X)
Publication Type :
Academic Journal
Accession number :
130618858
Full Text :
https://doi.org/10.1161/HYPERTENSIONAHA.118.11239