Back to Search Start Over

BASIS THEOREMS FOR ∑12-SETS.

Authors :
CHONG, CHI TAT
WU, LIUZHEN
YU, LIANG
Source :
Journal of Symbolic Logic; Mar2019, Vol. 84 Issue 1, p376-387, 12p
Publication Year :
2019

Abstract

We prove the following two basis theorems for ∑<superscript>1</superscript><subscript>2</subscript>-sets of reals: (1) Every nonthin ∑<superscript>1</superscript><subscript>2</subscript>-set has a perfect A<superscript>1</superscript><subscript>2</subscript>-subset if and only if it has a nonthin A<superscript>1</superscript><subscript>2</subscript>-subset, and this is equivalent to the statement that there is a nonconstructible real. (2) Every uncountable ∑<superscript>1</superscript><subscript>2</subscript>-set has an uncountable A<superscript>1</superscript><subscript>2</subscript>-subset if and only if either every real is constructible or ω<superscript>L</superscript><subscript>2</subscript> is countable. We also apply the method that proves (2) to show that if there is a nonconstructible real, then there is a perfect Π<superscript>1</superscript><subscript>2</subscript>-set with no nonempty Π<superscript>1</superscript><subscript>2</subscript>-thin subset, strengthening a result of Harrington [4]. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00224812
Volume :
84
Issue :
1
Database :
Supplemental Index
Journal :
Journal of Symbolic Logic
Publication Type :
Academic Journal
Accession number :
135348260
Full Text :
https://doi.org/10.1017/jsl.2018.81