Back to Search
Start Over
BASIS THEOREMS FOR ∑12-SETS.
- Source :
- Journal of Symbolic Logic; Mar2019, Vol. 84 Issue 1, p376-387, 12p
- Publication Year :
- 2019
-
Abstract
- We prove the following two basis theorems for ∑<superscript>1</superscript><subscript>2</subscript>-sets of reals: (1) Every nonthin ∑<superscript>1</superscript><subscript>2</subscript>-set has a perfect A<superscript>1</superscript><subscript>2</subscript>-subset if and only if it has a nonthin A<superscript>1</superscript><subscript>2</subscript>-subset, and this is equivalent to the statement that there is a nonconstructible real. (2) Every uncountable ∑<superscript>1</superscript><subscript>2</subscript>-set has an uncountable A<superscript>1</superscript><subscript>2</subscript>-subset if and only if either every real is constructible or ω<superscript>L</superscript><subscript>2</subscript> is countable. We also apply the method that proves (2) to show that if there is a nonconstructible real, then there is a perfect Π<superscript>1</superscript><subscript>2</subscript>-set with no nonempty Π<superscript>1</superscript><subscript>2</subscript>-thin subset, strengthening a result of Harrington [4]. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00224812
- Volume :
- 84
- Issue :
- 1
- Database :
- Supplemental Index
- Journal :
- Journal of Symbolic Logic
- Publication Type :
- Academic Journal
- Accession number :
- 135348260
- Full Text :
- https://doi.org/10.1017/jsl.2018.81