Back to Search
Start Over
Janus macromolecular brushes for synergistic cascade-amplified photodynamic therapy and enhanced chemotherapy.
- Source :
- Acta Biomaterialia; Jan2020, Vol. 101, p495-506, 12p
- Publication Year :
- 2020
-
Abstract
- The aggregation-caused quenching (ACQ) effect of photosensitizers and multidrug resistance are the major obstacles in photodynamic therapy (PDT) and chemotherapy, respectively. Synergistic photo-chemotherapy is a promising cancer treatment to overcome the short boards of each single therapy. However, the fabrication of nanocarriers acting as both photosensitizers in PDT and the vehicle of drug release is a key challenge. Herein, we constructed a well-defined porphyrin-containing Janus macromolecular brush and used it as both a photosensitizer and a pH-responsive vehicle for DOX release. The Janus macromolecular brush with pH-responsive side chains and porphyrin units linked covalently in each repeat unit was synthesized by the combination of reversible addition-fragmentation chain transfer (RAFT) polymerization and click chemistry. The high grafting content of porphyrin units in the macromolecular brush improved the DOX loading capability by π–π stacking and therefore reduced the total treatment dose of DOX-loaded macromolecular brush nanoparticles (NPs). The pH-responsive side chains played triple roles in synergistic cascade-amplified PDT and enhanced chemotherapy including an executor of controlled drug release, a ligand with a mitochondria-targeting feature, and a barrier to reduce the ACQ effect of porphyrin units. In vitro and in vivo studies confirmed that the DOX-loaded macromolecular brush NPs exhibited high phototoxicity and significant tumor inhibition efficacy. Synergistic photodynamic therapy (PDT) and chemotherapy has emerged as a promising cancer treatment to overcome the challenges of a single modality. Herein, we constructed new pH-responsive vesicles using porphyrin-containing Janus macromolecular brushes as theranostic nanocarriers to encapsulate high-loading doxorubicin (DOX) for synergistic cascade-amplified PDT and enhanced chemotherapy. The high grafting content of porphyrin units in Janus macromolecular brushes improved DOX loading capability by π–π stacking for enhanced chemotherapy. Moreover, pH-responsive side chains subsequently enhanced the suppression of the aggregation-caused quenching (ACQ) effect of porphyrins for cascade-amplified PDT. In vitro and in vivo studies confirmed that DOX-loaded macromolecular brush nanoparticles exhibited high phototoxicity and significant tumor inhibition efficacy. Image, graphical abstract [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 17427061
- Volume :
- 101
- Database :
- Supplemental Index
- Journal :
- Acta Biomaterialia
- Publication Type :
- Academic Journal
- Accession number :
- 140271383
- Full Text :
- https://doi.org/10.1016/j.actbio.2019.11.018