Back to Search Start Over

Identification of smart jammers: Learning-based approaches using wavelet preprocessing.

Authors :
Topal, Ozan Alp
Gecgel, Selen
Eksioglu, Ender Mete
Karabulut Kurt, Gunes
Source :
Physical Communication; Apr2020, Vol. 39, pN.PAG-N.PAG, 1p
Publication Year :
2020

Abstract

Smart jammer nodes can disrupt communication between a transmitter and a receiver in a wireless network, and they leave traces that are undetectable to classical jammer identification techniques, hidden in the time–frequency plane. These traces cannot be effectively identified through the use of the classical Fourier transform based time–frequency transformation (TFT) techniques with a fixed resolution. Inspired by the adaptive resolution property provided by the wavelet transforms, in this paper, we propose a jammer identification methodology that includes a pre-processing step to obtain a multi-resolution image, followed by the use of a classifier. Support vector machine (SVM) and deep convolutional neural network (DCNN) architectures are investigated as classifiers to automatically extract the features of the transformed signals and to classify them. Three different jamming attacks are considered, the barrage jamming that targets the complete transmission bandwidth, the synchronization signal jamming attack that targets synchronization signals and the reference signal jamming attack that targets the reference signals in an LTE downlink transmission scenario. The performance of the proposed approach is compared with the classical Fourier transform based TFT techniques, demonstrating the efficacy of the proposed approach in the presence of smart jammers. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
18744907
Volume :
39
Database :
Supplemental Index
Journal :
Physical Communication
Publication Type :
Academic Journal
Accession number :
142186801
Full Text :
https://doi.org/10.1016/j.phycom.2020.101029