Back to Search Start Over

An artificial intelligence based crowdsensing solution for on-demand accident scene monitoring.

Authors :
Barachi, May El
Kamoun, Faouzi
Ferdaos, Jannatul
Makni, Mouna
Amri, Imed
Source :
Procedia Computer Science; 2020, Vol. 170, p303-310, 8p
Publication Year :
2020

Abstract

Road traffic crashes have a devastating impact on societies by claiming more than 1.35 million lives each year and causing up to 50 million injuries. Improving the efficiency of emergency management systems constitutes a key measure to reduce road traffic deaths and injuries. In this work, we propose a comprehensive crowdsensing-based solution for the real-time collection and the analysis of accident scene intelligence as a means to improve the efficiency of the emergency response process and help reduce road fatalities. The solution leverages sensory, mobile, and web technologies for the real-time monitoring of accident scenes, and employs Artificial Intelligence for the automatic analysis of the accident scene data, to allow the automatic generation of accident intelligence reports. Police officers and rescue teams can use those reports for fast and accurate situational assessment and effective response to emergencies. The proposed system was fully implemented and its operation was successfully tested using a variety of scenarios. This work gives interesting insights into the possibility of leveraging crowdsensing and artificial intelligence for offering emergency situational awareness and improving the efficiency of emergency response operations. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
18770509
Volume :
170
Database :
Supplemental Index
Journal :
Procedia Computer Science
Publication Type :
Academic Journal
Accession number :
142852402
Full Text :
https://doi.org/10.1016/j.procs.2020.03.044