Back to Search Start Over

The effect of surface treatments on the color stability of CAD-CAM interim fixed dental prostheses.

Authors :
Yao, Qianqian
Morton, Dean
Eckert, George J.
Lin, Wei-Shao
Source :
Journal of Prosthetic Dentistry; Aug2021, Vol. 126 Issue 2, p248-253, 6p
Publication Year :
2021

Abstract

Additive manufacturing or 3D printing is gaining popularity in dentistry, including for interim fixed dental prostheses (IFDPs). However, evidence regarding the color stability of 3D-printed IFDPs is lacking. The purpose of this in vitro study was to investigate whether different surface treatments could affect the color stability of milled and 3D-printed IFDPs after simulated physiological aging. Forty milled IFDPs were fabricated with a 5-axis dental mill (DWX-51D; Roland DGA Corp) from polymethyl methacrylate disks (Temp Esthetic 98, A3.5, 98.5×16 mm; Harvest Dental Products, LLC). Forty 3D-printed IFDPs were fabricated with an in-office digital light processing 3D printer (MAX; Asiga) and light-polymerizing resin (NextDent Crown & Bridge A3.5; NextDent B.V). All milled and 3D-printed IFDPs were allocated into 4 different groups (n=10), according to different surface treatments: Control, Polish, Optiglaze, and Skinglaze. In the Control group, no surface treatment was applied to the IFDPs. For the Polish group, IFDPs were finished and polished with aluminum oxide finishers/polishers (Enhance PoGo Complete Kit; Dentsply Sirona). For the Optiglaze and Skinglaze groups, specimens were first finished and polished and prepared with additional light-polymerizing protective coatings (Optiglaze; GC America Inc, or New Outline Skin Glaze; anaxdent North America). Shade measurements were recorded with a digital spectrophotometer (Vita Easyshade V; VITA North America) before and after the thermocycling for the color stability comparisons. The effects of interim prosthesis type and surface treatments on ΔE∗, ΔL∗, Δa∗, and Δb∗ were examined using 2-way analysis of variance (ANOVA), and ΔE∗ was considered as the primary outcome variable. Post hoc pairwise comparisons were performed by using the Tukey honestly significant difference (HSD) method (α=.05 for all tests). Milled IFDPs had significantly smaller ΔE∗ than 3D-printed prostheses for the Control group only (P <.001). Within the milled IFDPs, Optiglaze group (mean ±standard deviation, 1.01 ±0.38) had significantly lower ΔE∗ than all the other surface treatments groups (Control group: 2.38 ±0.44, P <.001; Polish group: 1.83 ±0.51, P =.025; and Skinglaze group: 1.85 ±0.78, P =.021). Within the 3D-printed IFDPs, the Control group (3.83 ±0.71) had significantly larger ΔE∗ than all other surface treatments (Polish group: 2.66 ±0.89, P =.018; Skinglaze group: 1.40 ±0.73, P <.001; and Optiglaze group: 1.37 ±0.67, P <.001). The Polish group had significantly higher ΔE∗ than Skinglaze group (P =.009) and Optiglaze group (P =.007), while Skinglaze and Optiglaze groups were not significantly different from each other (P =1.000). For the milled IFDPs, only the nano-filled, light-polymerizing protective coating significantly lowered color changes after thermocycling simulating 6 months of intraoral physiological aging. For the 3D-printed IFDPs, surface polishing and both light-polymerizing protective coating agents all significantly reduced color changes of the prostheses after thermocycling. The protective effect of light-polymerizing coating agents was more substantial. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00223913
Volume :
126
Issue :
2
Database :
Supplemental Index
Journal :
Journal of Prosthetic Dentistry
Publication Type :
Academic Journal
Accession number :
151701585
Full Text :
https://doi.org/10.1016/j.prosdent.2020.05.017