Back to Search Start Over

Sorption, degradation and microbial toxicity of chemicals associated with hydraulic fracturing fluid and produced water in soils.

Authors :
Kookana, Rai S.
Williams, Mike
Gregg, Adrienne
Semmler, Adelle
Du, Jun
Apte, Simon C.
Source :
Environmental Pollution; Sep2022, Vol. 309, pN.PAG-N.PAG, 1p
Publication Year :
2022

Abstract

Spills of hydraulic fracturing (HF) fluids and of produced water during unconventional gas extraction operations may cause soil contamination. We studied the degradation and microbial toxicity of selected HF chemical components including two biocides (methylisothiozolinone- MIT, chloromethylisothiozolinone- CMIT), a gel-breaker aid (triethanolamine -TEA), and three geogenic chemicals (phenol, m- cresol and p- cresol) in ultrapure water, HF fluid and produced water in five different soil types (surface and subsurface soils). The degradation of the two biocides (in soils treated with HF fluid or ultrapure water) and of the three geogenic chemicals (in soils treated with produced water) was rapid (in all cases DT 50 values < 2 days in surface soils). In contrast, the loss of TEA was much slower in soils, especially in those treated with HF fluid (DT 50 > 30 days). Sorption coefficients (K oc in L/Kg) in these soils ranged from 71 to 733 for TEA, 64–408 for MIT and 11–72 for CMIT. In terms of soil microbial toxicity, exposure to HF fluid and produced water reduced microbial respiration, albeit temporarily. The overall microbial activities in surface soils contaminated with produced water had fully recovered in most soils. In contrast, the HF fluid addition to soils completely inhibited the nitrification in all soils, with little recovery over the 60 day experimental period. In the case of produced water exposure, three out of five surface soils showed complete recovery in nitrification during the study period. The functional genes for nitrogen fixation (nifH) and carbon cycling (GA1) and microbial community composition (16 S rRNA) were significantly affected by HF fluid in some soils. Overall, the study shows that the HF fluid can have significant detrimental impact on soil microbial functions, especially on nitrogen cycling. More work is needed to identify the exact cause of microbial toxicity in soils contaminated with HF fluid. [Display omitted] • Hydraulic fracturing (HF) fluid inhibited soil nitrification and altered the microbial community. • Substrate induced nitrification did not recover 60 days after HF fluid addition. • Triethanolamine degradation was markedly reduced in HF fluid treated soils. • Biocides and target geogenic organic chemicals disappeared from soils within two days. • Biocides showed little sorption to soils and were considered to be mobile. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02697491
Volume :
309
Database :
Supplemental Index
Journal :
Environmental Pollution
Publication Type :
Academic Journal
Accession number :
158443283
Full Text :
https://doi.org/10.1016/j.envpol.2022.119754