Back to Search Start Over

Effects of perfluorinated compounds homologues on chemical property, microbial composition, richness and diversity of urban forest soil.

Authors :
Zheng, Wei
Hu, Lei
Chen, Zekai
Tang, Jun
Pan, Yuliang
Yan, Wende
Chen, Xiaoyong
Peng, Yuanying
Chen, Lijun
Source :
Ecotoxicology & Environmental Safety; Jan2023, Vol. 249, pN.PAG-N.PAG, 1p
Publication Year :
2023

Abstract

Perfluorinated compounds (PFCs), as an important class of new persistent organic pollutants, are widely distributed in the environment. Yet the effects of different types and concentrations of PFCs on soil microbial community in urban forest ecosystems are remain uncertain. Here, two typical PFCs, perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), were selected to carry out a pot experiment in greenhouse with singly and joint treatment at different concentrations, to examine their effects on composition and diversity of soil microorganisms and availability of soil macronutrients by using high-throughput Illumina sequencing approach. The results showed both PFOA and PFOS application significantly increased soil NO 3 <superscript>-</superscript>-N and NH 4 <superscript>+</superscript>-N content, but did not alter total phosphorus content, compared to the control check (CK) treatments. Total potassium content was reduced in PFOA treatments but increased in PFOS and PFOA×PFOS treatments. The most dominant bacterial phylum was Chloroflexi in low and medium PFCs concentrations and the CK treatments, but it was switched to Acidobacteria in high concentrations. No obvious change was detected for the composition of the dominant fungi community in PFCs treatments compared to the CK treatments. With the increase of PFCs concentrations, soil bacterial richness decreased but its diversity increased, whereas the richness and diversity of fungal community usually decreased. Redundancy analyses revealed that soil fungal community was more sensitive to PFCs pollutants than soil bacterial communities. Further data analysis revealed by structural equation model (SEM) that the PFCs exposed for 60 days indirectly affects the diversity and richness of soil bacteria and fungi by directly affecting NO 3 <superscript>-</superscript>-N and NH 4 <superscript>+</superscript>-N content. The results suggested the concentration of PFCs pollutants played a primary role in determining the composition, richness and diversity of forest soil microbial communities. [Display omitted] • In the urban forest soil, fungal community was more sensitive to PFCs than bacteria. • PFCs' concentrations rather than types played a primary role in determining the composition, richness and diversity of the soil microbial communities. • Structural equation model (SEM) indicated that PFCs exposure indirectly affect the diversity and richness of soil microorganisms by affecting NO 3 <superscript>-</superscript>-N and NH 4 <superscript>+</superscript>-N in urban forest. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01476513
Volume :
249
Database :
Supplemental Index
Journal :
Ecotoxicology & Environmental Safety
Publication Type :
Academic Journal
Accession number :
161121466
Full Text :
https://doi.org/10.1016/j.ecoenv.2022.114458