Back to Search Start Over

The FeatureCloud Platform for Federated Learning in Biomedicine: Unified Approach.

Authors :
Matschinske, Julian
Späth, Julian
Bakhtiari, Mohammad
Probul, Niklas
Kazemi Majdabadi, Mohammad Mahdi
Nasirigerdeh, Reza
Torkzadehmahani, Reihaneh
Hartebrodt, Anne
Orban, Balazs-Attila
Fejér, Sándor-József
Zolotareva, Olga
Das, Supratim
Baumbach, Linda
Pauling, Josch K
Tomašević, Olivera
Bihari, Béla
Bloice, Marcus
Donner, Nina C
Fdhila, Walid
Frisch, Tobias
Source :
Journal of Medical Internet Research; 2023, Vol. 25 Issue 1, p1-16, 16p
Publication Year :
2023

Abstract

Background: Machine learning and artificial intelligence have shown promising results in many areas and are driven by the increasing amount of available data. However, these data are often distributed across different institutions and cannot be easily shared owing to strict privacy regulations. Federated learning (FL) allows the training of distributed machine learning models without sharing sensitive data. In addition, the implementation is time-consuming and requires advanced programming skills and complex technical infrastructures. Objective: Various tools and frameworks have been developed to simplify the development of FL algorithms and provide the necessary technical infrastructure. Although there are many high-quality frameworks, most focus only on a single application case or method. To our knowledge, there are no generic frameworks, meaning that the existing solutions are restricted to a particular type of algorithm or application field. Furthermore, most of these frameworks provide an application programming interface that needs programming knowledge. There is no collection of ready-to-use FL algorithms that are extendable and allow users (eg, researchers) without programming knowledge to apply FL. A central FL platform for both FL algorithm developers and users does not exist. This study aimed to address this gap and make FL available to everyone by developing FeatureCloud, an all-in-one platform for FL in biomedicine and beyond. Methods: The FeatureCloud platform consists of 3 main components: a global frontend, a global backend, and a local controller. Our platform uses a Docker to separate the local acting components of the platform from the sensitive data systems. We evaluated our platform using 4 different algorithms on 5 data sets for both accuracy and runtime. Results: FeatureCloud removes the complexity of distributed systems for developers and end users by providing a comprehensive platform for executing multi-institutional FL analyses and implementing FL algorithms. Through its integrated artificial intelligence store, federated algorithms can easily be published and reused by the community. To secure sensitive raw data, FeatureCloud supports privacy-enhancing technologies to secure the shared local models and assures high standards in data privacy to comply with the strict General Data Protection Regulation. Our evaluation shows that applications developed in FeatureCloud can produce highly similar results compared with centralized approaches and scale well for an increasing number of participating sites. Conclusions: FeatureCloud provides a ready-to-use platform that integrates the development and execution of FL algorithms while reducing the complexity to a minimum and removing the hurdles of federated infrastructure. Thus, we believe that it has the potential to greatly increase the accessibility of privacy-preserving and distributed data analyses in biomedicine and beyond. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14394456
Volume :
25
Issue :
1
Database :
Supplemental Index
Journal :
Journal of Medical Internet Research
Publication Type :
Academic Journal
Accession number :
181640877
Full Text :
https://doi.org/10.2196/42621