Back to Search Start Over

Calcium signals and the in vitro migration of chick ciliary ganglion cells.

Authors :
Ariano, Paolo
Erriquez, Jessica
Gilardino, Alessandra
Ferraro, Mario
Lovisolo, Davide
Distasi, Carla
Source :
Cell Calcium; Jul2006, Vol. 40 Issue 1, p63-71, 9p
Publication Year :
2006

Abstract

Abstract: We have studied calcium signals and their role in the migration of neuronal and nonneuronal cells of embryonic chick ciliary ganglion (CG). In vitro, neurons migrate in association with nonneuronal cells to form cellular aggregates. Changes in the modulus of the velocity of the neuron–nonneuronal cell complex were observed in response to treatments that increased or decreased intracellular calcium concentration. In addition, both cell types generated spontaneous calcium activity that was abolished by removal of extracellular calcium. Calcium signals in neurons could be characterized as either spikes or waves. Neuronal spikes were found to be related to action potential generation whereas neuronal waves were due to voltage-independent calcium influx. Nonneuronal cells generated calcium oscillations that were dependent on calcium release from intracellular stores and on voltage-independent calcium influx. Application of thimerosal, a compound that stimulates calcium mobilization from internal stores, increased: (1) the amplitude of spontaneous nonneuronal oscillations; (2) the area of migrating nonneuronal cells; and (3) the velocity of the neuronal–nonneuronal cell complex. We conclude that CG cell migration is a calcium dependent process and that nonneuronal cell calcium oscillations play a key role in the modulation of velocity [Copyright &y& Elsevier]

Details

Language :
English
ISSN :
01434160
Volume :
40
Issue :
1
Database :
Supplemental Index
Journal :
Cell Calcium
Publication Type :
Academic Journal
Accession number :
22083181
Full Text :
https://doi.org/10.1016/j.ceca.2006.03.010