Back to Search Start Over

Adding Local Constraints to Bayesian Networks.

Authors :
Carbonell, Jaime G.
Siekmann, Jörg
Kobti, Ziad
Wu, Dan
Crowley, Mark
Boerlage, Brent
Poole, David
Source :
Advances in Artificial Intelligence; 2007, p344-355, 12p
Publication Year :
2007

Abstract

When using Bayesian networks, practitioners often express constraints among variables by conditioning a common child node to induce the desired distribution. For example, an ‘or' constraint can be easily expressed by a node modelling a logical ‘or' of its parents' values being conditioned to true. This has the desired effect that at least one parent must be true. However, conditioning also alters the distributions of further ancestors in the network. In this paper we argue that these side effects are undesirable when constraints are added during model design. We describe a method called shielding to remove these side effects while remaining within the directed language of Bayesian networks. This method is then compared to chain graphs which allow undirected and directed edges and which model equivalent distributions. Thus, in addition to solving this common modelling problem, shielded Bayesian networks provide a novel method for implementing chain graphs with existing Bayesian network tools. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISBNs :
9783540726647
Database :
Supplemental Index
Journal :
Advances in Artificial Intelligence
Publication Type :
Book
Accession number :
33179799
Full Text :
https://doi.org/10.1007/978-3-540-72665-4_30