Back to Search Start Over

Geometry, kinematics, and displacement characteristics of tear-fault systems: An example from the deep-water Niger Delta.

Authors :
Benesh, Nathan P.
Plesch, Andreas
Shaw, John H.
Source :
AAPG Bulletin; Mar2014, Vol. 98 Issue 3, p465-482, 18p
Publication Year :
2014

Abstract

We use three-dimensional seismic reflection data and new map-based structural restoration methods to define the displacement history and characteristics of a series of tear faults in the deep-water Niger Delta. Deformation in the deep-water Niger Delta is focused mostiy within two fold-and-thrust belts that accom-modate downdip shortening produced by updip extension on the continental shelf. This shortening is accommodated by a series of thrust sheets that are locally cut by strike-slip faults. Through seismic mapping and interpretation, we resolve these strike-slip faults to be tear faults that share a common detach-ment level with the thrust faults. Acting in conjunction, these structures have accommodated a north-south gradient in westward-directed shortening. We apply a map-based resto-ration technique implemented in Gocad to restore an upper stratigraphie horizon of the late Oligocene and use this analysis to calculate slip profiles along the strike-slip faults. The slip magnitudes and directions change abruptly along the lengths of the tear faults as they interact with numerous thrust sheets. The discontinuous nature of these slip profiles reflects the man-ner in which they have accommodated differential movement between the footwall and hanging-wall blocks of the thrust sheets. In cases for which the relationship between a strike-slip fault and multiple thrust faults is unclear, the recognition of this type of slip profile may distinguish thin-skinned tear faults from more conventional deep-seated, throughgoing strike-slip faults. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01491423
Volume :
98
Issue :
3
Database :
Supplemental Index
Journal :
AAPG Bulletin
Publication Type :
Periodical
Accession number :
94960791
Full Text :
https://doi.org/10.1306/06251311013