Back to Search Start Over

Genesis and Exploration Implications of Epithermal Gold Mineralization and Porphyry-Style Alteration at the Endeavour 41 Prospect, Cowal District, New South Wales, Australia.

Authors :
ZUKOWSKI, WOJCIECH
COOKE, DAVID R.
DEYELL, CARI L.
MCINNES, PAUL
SIMPSON, KIRSTIE
Source :
Economic Geology & the Bulletin of the Society of Economic Geologists; Jun/Jul2014, Vol. 109 Issue 4, p1079-1115, 37p
Publication Year :
2014

Abstract

Endeavour 41 is a deep-level, structurally controlled epithermal gold deposit hosted by Early Ordovician subaqueous volcanosedimentary rocks. Calc-alkalic to shoshonitic, mafic to intermediate sills, dikes, and stocks intruded the volcanosedimentary units in the Middle Ordovician. The most felsic intrusions, together with pyroxene-bearing dikes, are temporally related to gold mineralization. Postmineralization intrusions are exclusively of mafic character. Endeavour 41 evolved from early, high-temperature porphyry-style veins and alteration to lower-temperature epithermal-style gold mineralization. Early magnetite and garnet-bearing veins (stage 1 and 2, respectively) associated with actinolite, magnetite, and biotite-bearing alteration assemblages have been cut by gold-bearing veins and associated alteration assemblages. There were two main epithermal-style gold mineralizing events: (1) quartz-pyrite ± calcite ± adularia ± chlorite veins (stage 3) and (2) carbonate-base metal sulfide veins (calcite, ankerite, quartz, pyrite, sphalerite, galena, chalcopyrite, Ag tellurides, arsenopyrite, apatite, hematite, illite-muscovite, and chlorite [stage 4]). Gold occurs principally as a refractory phase in pyrite. It also occurs as grains of Au-Ag tellurides and as inclusions of free gold in pyrite, sphalerite, and chalcopyrite. Hydrothermal alteration associated with gold-mineralized veins produced early epidote and K-feldspar-epidote-bearing alteration halos and later-stage illite-muscovite-K-feldspar and calcite-rich alteration halos. The highest gold grades are associated with muscovite and illite alteration. Stable isotope analyses and fluid inclusion data provide evidence of a magmatic-hydrothermal component to the mineralizing fluids. Fluid inclusion data suggest that gold precipitated from boiling saline waters (~9.0 wt % NaC1) at temperatures of about 310°C. Stage 3 veins are estimated to have formed approximately 1 km below the paleosurface at hydrostatic pressure (~90 bars). Stage 4 illite formed at temperatures below ~280°C. Stage 3 calcite has δ<superscript>13</superscript>C<subscript>calcite</subscript> and δ<superscript>18</superscript>C<subscript>calcite</subscript> values that range from ~5.2 to -4.6 and from 11.6 to 12.1%o, respectively. Calculated fluids for these mineral values at 300°C (δ<superscript>13</superscript>C<subscript>fluid</subscript> = -3%; δ<superscript>18</superscript>C<subscript>fluid</subscript> = 6%) are consistent with a magmatic-hydrothermal source of carbon and oxygen during stage 3. A component of meteoric waters is inferred for stage 4, because δ<superscript>13</superscript>C<subscript>carbonate</subscript> and δ<superscript>18</superscript>C<subscript>carbonate</subscript> values range from -6.9 to -0.5 and from 10.9 to 30.1%o, respectively, corresponding to δ<superscript>13</superscript>C<subscript>fluid</subscript> and δ<superscript>18</superscript>C<subscript>fluid</subscript> values of-5 and -2%c at 200° to 250°C. The δ<superscript>34</superscript>C<subscript>sulfide</subscript> values for early vein stages range between -4.9 and -0.5%o. Stage 3 has δ<superscript>34</superscript>C<subscript>sulfide</subscript> values ranging from -5.2 to +0.8% with the most <superscript>34</superscript>S enriched values deposited away from the mineralized center. Stage 4 sulfides have isotopic compositions from -7.5 to +2.5%c. The negative isotopic values are consistent with oxidized (sulfate-predominant) magmatic-hydrothermal fluids. Sulfur isotopic zonation patterns show that the most negative <superscript>34</superscript>S values correlate with gold-enriched domains and also with areas that contain high-temper ature, porphyry-style alteration fades. The negative sulfur isotope values define zones of upflow for the mineralizing magmatic-hydrothermal fluids. The paragenetic history of Endeavour 41 records a transition from deep-level to shallow-level magmatic-hydrothermal activity. This transition implies erosion and unroofing of the system synchronous with mineralization. High-temperature assemblages (e.g., actinolite-magnetite, biotite, and K-feldspar-epidote) indicate that epithermal mineralization occurred proximal to a magmatic-hydrothermal center and that there is potential for the discovery of porphyry copper-gold mineralization below the current level of diamond drilling. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
03610128
Volume :
109
Issue :
4
Database :
Supplemental Index
Journal :
Economic Geology & the Bulletin of the Society of Economic Geologists
Publication Type :
Academic Journal
Accession number :
95783080
Full Text :
https://doi.org/10.2113/econgeo.109.4.1079