Back to Search Start Over

Reassignment of the 11 537 cm<SUP>-1</SUP> Band of Hydrogen Fluoride Dimer and Observation of the Intermolecular Combination Mode 3ν<INF>1</INF> + ν<INF>4</INF>

Authors :
Chuang, C.-C.
Tsang, S. N.
Klemperer, W.
Chang, H.-C.
Source :
The Journal of Physical Chemistry - Part A; September 4, 1997, Vol. 101 Issue: 36 p6702-6708, 7p
Publication Year :
1997

Abstract

We reexamine the N = 3 valence excitations of (HF)&lt;INF&gt;2&lt;/INF&gt; and their combinations with intermolecular vibrations using a high-sensitivity germanium detector which collects the first overtone emission of fragment HF. We use the specific vibrational product state production to assign the quantum numbers within a vibrational polyad. The band previously assigned to K = 1 of ν&lt;INF&gt;1&lt;/INF&gt; + 2ν&lt;INF&gt;2&lt;/INF&gt; (J. Chem. Phys. &lt;BO&gt;1994&lt;/BO&gt;, 100, 1) is shown to originate from K = 1 of 3ν&lt;INF&gt;2&lt;/INF&gt; + ν&lt;INF&gt;6&lt;/INF&gt;. This assignment, based on photofragment HF vibrational state, is supported by the observation of quenched hydrogen interchange tunneling (Δν&lt;INF&gt;t&lt;/INF&gt; = −0.6 GHz) and rapid vibrational predissociation [Δν&lt;INF&gt;pd&lt;/INF&gt; = 3.5(10) GHz] of this state. The K = 1 band origin of the lower A&lt;SUP&gt;-&lt;/SUP&gt; level is 11 537.047(6) cm&lt;SUP&gt;-1&lt;/SUP&gt;. The rotational constants for the two tunneling components are the same within experimental error, (&amp;Bmacr;) = 0.2182(2) cm&lt;SUP&gt;-1&lt;/SUP&gt;. The out-of-plane vibration frequency, 3ν&lt;INF&gt;2&lt;/INF&gt; + ν&lt;INF&gt;6&lt;/INF&gt; − 3ν&lt;INF&gt;2&lt;/INF&gt; = 493.96(3) cm&lt;SUP&gt;-1&lt;/SUP&gt;, is increased 25% from the ground state. The predissociation rate of this combination state is a factor of three slower than that observed at 3ν&lt;INF&gt;2&lt;/INF&gt;. The combination mode 3ν&lt;INF&gt;1&lt;/INF&gt; + ν&lt;INF&gt;4&lt;/INF&gt; has band origins of ν&lt;INF&gt;0&lt;/INF&gt; = 11 402.889(4) and 11 402.867(8) cm&lt;SUP&gt;-1&lt;/SUP&gt; and rotational constants of &amp;Bmacr; = 0.216 39(17) and 0.217 04(15) cm&lt;SUP&gt;-1&lt;/SUP&gt; for the two tunneling components A&lt;SUP&gt;+&lt;/SUP&gt; and B&lt;SUP&gt;+&lt;/SUP&gt;, respectively. The tunnel splitting Δν&lt;INF&gt;t&lt;/INF&gt; = ν&lt;INF&gt;0&lt;/INF&gt;(B&lt;SUP&gt;+&lt;/SUP&gt;) − ν&lt;INF&gt;0&lt;/INF&gt;(A&lt;SUP&gt;+&lt;/SUP&gt;) = −0.021(8) cm&lt;SUP&gt;-1&lt;/SUP&gt;. The frequency of ν&lt;INF&gt;4&lt;/INF&gt; the intermolecular or hydrogen bond stretching vibration, 3ν&lt;INF&gt;1&lt;/INF&gt; + ν&lt;INF&gt;4&lt;/INF&gt; − 3ν&lt;INF&gt;1&lt;/INF&gt; = 129.36 cm&lt;SUP&gt;-1&lt;/SUP&gt;, is quite similar to that at ν&lt;INF&gt;1&lt;/INF&gt;, suggesting only a minor dependence of the hydrogen bond vibration on the free-HF bond length. The 3ν&lt;INF&gt;1&lt;/INF&gt; + ν&lt;INF&gt;4&lt;/INF&gt; band has a predissociation linewidth of 2.5(2) GHz, one order of magnitude larger than the 0.24(2) GHz of the pure overtone 3ν&lt;INF&gt;1&lt;/INF&gt; state. The coupling of this level to the dark state 3ν&lt;INF&gt;2&lt;/INF&gt; + ν&lt;INF&gt;4&lt;/INF&gt; + ν&lt;INF&gt;5&lt;/INF&gt; is suggested as the origin of the observed linewidth increase.

Details

Language :
English
ISSN :
10895639 and 15205215
Volume :
101
Issue :
36
Database :
Supplemental Index
Journal :
The Journal of Physical Chemistry - Part A
Publication Type :
Periodical
Accession number :
ejs1122065