Back to Search
Start Over
Anodic characteristics of amorphous nickel-value metal alloys containing small amounts of platinum group elements in 0.5 M NaCl
- Source :
- Journal of Applied Electrochemistry; March 1987, Vol. 17 Issue: 2 p347-356, 10p
- Publication Year :
- 1987
-
Abstract
- By utilizing the characteristics of amorphous alloys capable of possessing specific electrocatalytic activity and corrosion resistance by alloying and surface activation treatment, an attempt was made to find amorphous alloys which are active as the anode material for production of sodium hypochlorite by electrolysis of seawater. Amorphous Ni-Nb and Ni-Ta alloys containing only 0.5–2.0 at % palladium and other platinum group metals showed a very high activity for chlorine production by electrolysis of 0.5M NaCl at 30°C when they were previously immersed in 46% HF for surface activation. The current efficiency of these surface-activated alloys for chlorine evolution considerably exceeded that of the currently used, most active Pt-Ir/Ti electrode for electrolysis of seawater. The surface activation treatment resulted in preferential dissolution of alloy constituents unnecessary for the electrocatalytic activity, i.e. nickel and valve metals, with a consequent enrichment of electrocatalytically active platinum group elements in the surface-activated layer. The corrosion weight loss of the surface-activated amorphous alloys under the steady state conditions for chlorine production was undetectable by a microbalance.
Details
- Language :
- English
- ISSN :
- 0021891X and 15728838
- Volume :
- 17
- Issue :
- 2
- Database :
- Supplemental Index
- Journal :
- Journal of Applied Electrochemistry
- Publication Type :
- Periodical
- Accession number :
- ejs15442555
- Full Text :
- https://doi.org/10.1007/BF01023301