Back to Search Start Over

Estimating the impact force generated by granular flow on a rigid obstruction

Authors :
Moriguchi, Shuji
Borja, Ronaldo
Yashima, Atsushi
Sawada, Kazuhide
Source :
Acta Geotechnica; March 2009, Vol. 4 Issue: 1 p57-71, 15p
Publication Year :
2009

Abstract

Abstract: Flowing sediments such as debris and liquefied soils could exert a tremendous amount of force as they impact objects along their paths. The total impact force generally varies with slope angle, velocity at impact, and thickness of the flowing sediment. Estimation of the impact force of flowing sediments against protective measures such as earth retaining structures is an important factor for risk assessment. In this paper, we conduct small-scale laboratory physical modeling of sand flow at different slopes and measure the impact force exerted by this material on a fixed rigid wall. We also conduct numerical simulations in the Eulerian framework using computational fluid dynamics algorithms to analyze and reproduce the laboratory test results. The numerical simulations take into consideration the overtopping of the wall with sand, which influenced the measured impact force–time history responses. In addition, the numerical simulations are shown to capture accurately the change of the impact force with slope angle. Finally, the modeling approach conducted in this study is used to estimate the quasi-static force generated by the sediment as it comes to rest on the wall following impact.

Details

Language :
English
ISSN :
18611125 and 18611133
Volume :
4
Issue :
1
Database :
Supplemental Index
Journal :
Acta Geotechnica
Publication Type :
Periodical
Accession number :
ejs17996432
Full Text :
https://doi.org/10.1007/s11440-009-0084-5