Back to Search Start Over

Functional cloning, sorting, and expression profiling of nucleic acid-binding proteins.

Authors :
Ramanathan, Y
Zhang, Haibo
Aris, Virginie
Soteropoulos, Patricia
Aaronson, Stuart A
Tolias, Peter P
Source :
Genome Research; August 2002, Vol. 12 Issue: 8 p1175-1184, 10p
Publication Year :
2002

Abstract

A major challenge in the post-sequencing era is to elucidate the activity and biological function of genes that reside in the human genome. An important subset includes genes that encode proteins that regulate gene expression or maintain the structural integrity of the genome. Using a novel oligonucleotide-binding substrate as bait, we show the feasibility of a modified functional expression-cloning strategy to identify human cDNAs that encode a spectrum of nucleic acid-binding proteins (NBPs). Approximately 170 cDNAs were identified from screening phage libraries derived from a human colorectal adenocarcinoma cell line and from noncancerous fetal lung tissue. Sequence analysis confirmed that virtually every clone contained a known DNA- or RNA-binding motif. We also report on a complementary sorting strategy that, in the absence of subcloning and protein purification, can distinguish different classes of NBPs according to their particular binding properties. To extend our functional annotation of NBPs, we have used GeneChip expression profiling of 14 different breast-derived cell lines to examine the relative transcriptional activity of genes identified in our screen and cluster analysis to discover other genes that have similar expression patterns. Finally, we present strategies to analyze the upstream regulatory region of each gene within a cluster group and select unique combinations of transcription factor binding sites that may be responsible for dictating the observed synexpression.

Details

Language :
English
ISSN :
10889051 and 15495469
Volume :
12
Issue :
8
Database :
Supplemental Index
Journal :
Genome Research
Publication Type :
Periodical
Accession number :
ejs19031478
Full Text :
https://doi.org/10.1101/gr.156002