Back to Search Start Over

Three-dimensional time-resolved optical tomography of a conical breast phantom

Authors :
Hebden, Jeremy C.
Veenstra, Hylke
Dehghani, Hamid
Hillman, Elizabeth M. C.
Schweiger, Martin
Arridge, Simon R.
Delpy, David T.
Source :
Applied Optics; July 2001, Vol. 40 Issue: 19 p3278-3287, 10p
Publication Year :
2001

Abstract

A 32-channel time-resolved imaging device for medical optical tomography has been employed to evaluate a scheme for imaging the human female breast. The fully automated instrument and the reconstruction procedure have been tested on a conical phantom with tissue-equivalent optical properties. The imaging protocol has been designed to obviate compression of the breast and the need for coupling fluids. Images are generated from experimental data with an iterative reconstruction algorithm that employs a three-dimensional (3D) finite-element diffusion-based forward model. Embedded regions with twice the background optical properties are revealed in separate 3D absorption and scattering images of the phantom. The implications for 3D time-resolved optical tomography of the breast are discussed.

Details

Language :
English
ISSN :
1559128X and 21553165
Volume :
40
Issue :
19
Database :
Supplemental Index
Journal :
Applied Optics
Publication Type :
Periodical
Accession number :
ejs20900614