Back to Search
Start Over
Inactivation of olfactory sensilla of a single morphological type differentially affects the response of <TOGGLE>Drosophila</TOGGLE> to odors
- Source :
- Journal of Neurobiology; 5 June 2002, Vol. 51 Issue: 3 p248-260, 13p
- Publication Year :
- 2002
-
Abstract
- The olfactory organs on the head of Drosophila, antennae and maxillary palps, contain several hundred olfactory hairs, each with one or more olfactory receptor neurons. Olfactory hairs belong to one of three main morphological types, trichoid, basiconic, and coeloconic sensilla, and show characteristic spatial distribution patterns on the surface of the antenna and maxillary palps. Here we show that targeting expression of the cell-death gene reaper to basiconic sensilla (BS) causes the specific inactivation of most olfactory sensilla of this type with no detectable effect on other types of olfactory sensilla or the structure of the antennal lobe. Our data suggest that BS are required for a normal sensitivity to many odorants with a variety of chemical structures, through a wide range of concentrations. Interestingly, however, in contrast to other odorants tested, the behavioral response of ablated flies to intermediate concentrations of propionic and butyric acids is normal, suggesting the involvement of sensilla unaffected by ectopic reaper expression, probably coeloconic sensilla that respond strongly to these two organic acids. As inactivation of BS causes an underestimation of the concentration of both acids detectable at both the highest and lowest odorants concentrations, our results suggest that concentration coding for these two odorants relies on the integration of signals from different subsets of sensilla, most likely of different morphological types.
Details
- Language :
- English
- ISSN :
- 00223034 and 10974695
- Volume :
- 51
- Issue :
- 3
- Database :
- Supplemental Index
- Journal :
- Journal of Neurobiology
- Publication Type :
- Periodical
- Accession number :
- ejs2163272
- Full Text :
- https://doi.org/10.1002/neu.10057