Back to Search Start Over

Impact of the Nature of the Substituent at the 3-Position of 4H-1,2,4-Benzothiadiazine 1,1-Dioxides on Their Opening Activity toward ATP-Sensitive Potassium Channels

Authors :
Pirotte, Bernard
de Tullio, Pascal
Boverie, Stéphane
Michaux, Catherine
Lebrun, Philippe
Source :
Journal of Medicinal Chemistry; 20240101, Issue: Preprints
Publication Year :
2024

Abstract

The synthesis of diversely substituted 3-isopropoxy-, 3-isopropylsulfanyl-, 3-isopropylsulfinyl-, and 3-isobutyl-4H-1,2,4-benzothiadiazine 1,1-dioxides is described. Their activity on pancreatic β-cells (inhibitory effect on the insulin releasing process) and on vascular and uterine smooth muscle tissues (myorelaxant effects) was compared to that of previously reported KATPchannel openers belonging to 3-isopropylamino-4H-1,2,4-benzothiadiazine 1,1-dioxides. The present study aimed at evaluating the impact on biological activity of the isosteric replacement of the NH group of 3-alkylamino-4H-1,2,4-benzothiadiazine 1,1-dioxides by a O, S, S(O), or CH2group. By comparing compounds bearing identical substituents, the following rank order of potency on pancreatic β-cells was observed: 3-isopropylamino > 3-isobutyl > 3-isopropoxy > 3-isopropylsulfanyl > 3-isopropylsulfinyl-substituted 4H-1,2,4-benzothiadiazine 1,1-dioxides (NH > CH2> O > S > S(O)). A molecular modeling study revealed that 3-isopropoxy-, 3-isopropylsulfanyl-, and 3-isopropylamino-substituted compounds adopted a similar low-energy conformation (preferred orientation of the isopropyl chain). Moreover, no direct relationship was detected between the conformational freedom of the different classes of benzothiadiazines (from the most to the lowest conformationally constrained compounds: NH > O > S > CH2) and their biological activity on insulin-secreting cells. Therefore, the present study confirmed the critical role of the NH group at the 3-position for the establishment of a strong hydrogen bond responsible for optimal activity expressed by 3-alkylamino-4H-1,2,4-benzothiadiazine 1,1-dioxides on insulin-secreting cells. Radioisotopic and fluorimetric experiments conducted with 7-chloro-3-isopropoxy-4H-1,2,4-benzothiadiazine 1,1-dioxide 10cdemonstrated that such a compound, bearing a short branched O-alkyl group instead of the NH-alkyl group at the 3-position, also behaved as a specific KATPchannel opener. Lastly, the present work further identified 3-(alkyl/aralkyl)sulfanyl-substituted 7-chloro-4H-1,2,4-benzothiadiazine 1,1-dioxides as a class of promising myorelaxant drugs acting on uterine smooth muscles, at least in part, through the activation of KATPchannels.

Details

Language :
English
ISSN :
00222623 and 15204804
Issue :
Preprints
Database :
Supplemental Index
Journal :
Journal of Medicinal Chemistry
Publication Type :
Periodical
Accession number :
ejs23465319
Full Text :
https://doi.org/10.1021/jm200100c