Back to Search Start Over

Fabrication Characteristics of SOFC Single Cell Using Nanocrystalline 1Ce10ScSZ Electrolyte Powder prepared by Co-Precipitation Process

Authors :
Kang, Ju Hee
Kim, Young Mi
Kim, Ho-Sung
Lee, Moo Sung
Jang, Jae Hyuk
Jo, Jin-Hun
Source :
Journal of Fuel Cell Science and Technology; February 2012, Vol. 9 Issue: 1 p011015-011015, 1p
Publication Year :
2012

Abstract

Nanocrystalline ceria-doped scandia-stabilized zirconia (1Ce10ScSZ) powders were prepared via the co-precipitation process for solid oxide fuel cell. The effects of the calcination temperature on different properties of the as-synthesized powders, such as phase evolution, crystalline size, and specific surface area were investigated. The synthesized powders calcined at 900 °C showed a specific surface area of 5 m2 g−1 and crystalline size of 28.2 nm, and ionic conductivity of 0.07S cm−1 as measured at 750 °C. An anode-supported electrolyte with a thin electrolyte layer of 6μm composed of the synthesized 1Ce10ScSZ powders was fabricated using the tape-casting and co-sintering techniques for a solid oxide fuel cell (SOFC) single cell. The open-circuit voltage of the single cell thus obtained was 1.11 V at 750 °C, indicating the dense microstructure of the electrolyte layer. A power density of 0.9W cm−2 was obtained for the SOFC single cell at 1.5A cm−2 and 750 °C. The SOFC single cell fabricated using the nanocrystalline 1CeScSZ electrolyte exhibited good performance because of the drastic reductions in the ohmic resistances.

Details

Language :
English
ISSN :
1550624X and 15516989
Volume :
9
Issue :
1
Database :
Supplemental Index
Journal :
Journal of Fuel Cell Science and Technology
Publication Type :
Periodical
Accession number :
ejs26525109
Full Text :
https://doi.org/10.1115/1.4003783