Back to Search Start Over

Quantized Kernel Least Mean Square Algorithm

Authors :
Chen, Badong
Zhao, Songlin
Zhu, Pingping
Principe, J. C.
Source :
IEEE Transactions on Neural Networks and Learning Systems; January 2012, Vol. 23 Issue: 1 p22-32, 11p
Publication Year :
2012

Abstract

In this paper, we propose a quantization approach, as an alternative of sparsification, to curb the growth of the radial basis function structure in kernel adaptive filtering. The basic idea behind this method is to quantize and hence compress the input (or feature) space. Different from sparsification, the new approach uses the “redundant” data to update the coefficient of the closest center. In particular, a quantized kernel least mean square (QKLMS) algorithm is developed, which is based on a simple online vector quantization method. The analytical study of the mean square convergence has been carried out. The energy conservation relation for QKLMS is established, and on this basis we arrive at a sufficient condition for mean square convergence, and a lower and upper bound on the theoretical value of the steady-state excess mean square error. Static function estimation and short-term chaotic time-series prediction examples are presented to demonstrate the excellent performance.

Details

Language :
English
ISSN :
2162237x and 21622388
Volume :
23
Issue :
1
Database :
Supplemental Index
Journal :
IEEE Transactions on Neural Networks and Learning Systems
Publication Type :
Periodical
Accession number :
ejs26724496
Full Text :
https://doi.org/10.1109/TNNLS.2011.2178446