Back to Search Start Over

Mechanism for Calcium Ion Sensing by the C2A Domain of Synaptotagmin I

Authors :
Gauer, Jacob W.
Sisk, Ryan
Murphy, Jesse R.
Jacobson, Heathere
Sutton, R. Bryan
Gillispie, Gregory D.
Hinderliter, Anne
Source :
Biophysical Journal; July 2012, Vol. 103 Issue: 2 p238-246, 9p
Publication Year :
2012

Abstract

The C2A domain is one of two calcium ion (Ca2+)- and membrane-binding domains within synaptotagmin I (Syt I), the identified Ca2+sensor for regulated exocytosis of neurotransmitter. We propose that the mechanistic basis for C2A's response to Ca2+and cellular function stems from marginal stability and ligand-induced redistributions of protein conformers. To test this hypothesis, we used a combination of calorimetric and fluorescence techniques. We measured free energies of stability by globally fitting differential scanning calorimetry and fluorescence lifetime spectroscopy denaturation data, and found that C2A is weakly stable. Additionally, using partition functions in a fluorescence resonance energy transfer approach, we found that the Ca2+- and membrane-binding sites of C2A exhibit weak cooperative linkage. Lastly, a dye-release assay revealed that the Ca2+- and membrane-bound conformer subset of C2A promote membrane disruption. We discuss how these phenomena may lead to both cooperative and functional responses of Syt I.

Details

Language :
English
ISSN :
00063495 and 15420086
Volume :
103
Issue :
2
Database :
Supplemental Index
Journal :
Biophysical Journal
Publication Type :
Periodical
Accession number :
ejs27941618
Full Text :
https://doi.org/10.1016/j.bpj.2012.05.051