Back to Search Start Over

High photocatalytic activity of mixed anatase-rutile phases on commercial TiO2 nanoparticles

Authors :
Ruu, Wai
Lintang, Hendrik O
Shamsuddin, Mustaffa
Yuliati, Leny
Source :
IOP Conference Series: Materials Science and Engineering; January 2016, Vol. 107 Issue: 1 p012005-012005, 1p
Publication Year :
2016

Abstract

Titanium dioxide (TiO2) is well-known as an active photocatalyst for degradation of various organic pollutants. Over the years, a wide range of TiO2 nanoparticles with different phase compositions, crystallinities, and surface areas have been developed. Due to the different methods and conditions used to synthesize these commercial TiO2 nanoparticles, the properties and photocatalytic performance would also be different from each other. In this study, the photocatalytic removal of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5- trichlorophenoxyacetic acid (2,4,5-T) was investigated on commercial Evonik P25, Evonik P90, Hombikat UV100 and Hombikat N100 TiO2 nanoparticles. Upon photocatalytic tests, it was found that overall, the photocatalytic activities of the P25 and the P90 were higher than the N100 and the UV100 for the removal of both 2,4-D and 2,4,5-T. The high activities of the P25 and the P90 could be attributed to their phase compositions, which are made up of a mixture of anatase and rutile phases of TiO2. Whereas, the UV100 and the N100 are made up of 100% anatase phase of TiO2. The synergistic effect of the anatase/rutile mixture was reported to slow down the recombination rate of photogenerated electron-hole pairs. Consequently, the photocatalytic activity was increased on these TiO2 nanoparticles.

Details

Language :
English
ISSN :
17578981 and 1757899X
Volume :
107
Issue :
1
Database :
Supplemental Index
Journal :
IOP Conference Series: Materials Science and Engineering
Publication Type :
Periodical
Accession number :
ejs38042585