Back to Search
Start Over
Pulse Electrochemical Driven Rapid Layer-by-Layer Assembly of Polydopamine and Hydroxyapatite Nanofilms via Alternative Redox in SituSynthesis for Bone Regeneration
- Source :
- ACS Biomaterials Science & Engineering; June 2016, Vol. 2 Issue: 6 p920-928, 9p
- Publication Year :
- 2016
-
Abstract
- Polydopamine (PDA) is an important candidate material for the surface modification of biomedical devices because of its good adhesiveness and biocompatibility. However, PDA nanofilms lack osteoinductivity, limiting their applications in bone tissue engineering. Hydroxyapatite nanoparticles (HA-NPs) are the major component of natural bone, which can be used to effectively enhance the osteoinductivity of PDA nanofilms. Herein, we developed a pulse electrochemical driven layer-by-layer (PED-LbL) assembly process to rapidly deposit HA-NPs and PDA (HA-PDA) multilayer nanofilms. In this process, PDA and HA-NPs are in situsynthesized in two sequential oxidative and reductive pulses in each electrochemical deposition cycle and alternately deposited on the substrate surfaces. PDA assists the in situsynthesis of HA-NPs by working as a template, which avoids the noncontrollable HA nucleation and aggregation. The HA-PDA multilayer nanofilms serve as a tunable reservoir to deliver bone morphogenetic protein-2 and exhibit high osteoinductivity both in vitroand in vivo. This PED-LbL assembly process breaks the limitation of traditional LbL assembly, allowing not only the rapid assembly of oppositely charged polyelectrolytes but also the in situsynthesis of organic/inorganic NPs that are uniformly incorporated in the nanofilm. It has broad applications in the preparation of versatile surface coatings on various biomedical devices.
Details
- Language :
- English
- ISSN :
- 23739878
- Volume :
- 2
- Issue :
- 6
- Database :
- Supplemental Index
- Journal :
- ACS Biomaterials Science & Engineering
- Publication Type :
- Periodical
- Accession number :
- ejs38955191
- Full Text :
- https://doi.org/10.1021/acsbiomaterials.6b00015