Back to Search
Start Over
THE LEVEL 12 ANALOGUE OF RAMANUJAN’S FUNCTION $k$
- Source :
- Journal of the Australian Mathematical Society; August 2016, Vol. 101 Issue: 1 p29-53, 25p
- Publication Year :
- 2016
-
Abstract
- We provide a comprehensive study of the function $h=h(q)$defined by $$\begin{eqnarray}h=q\mathop{\prod }_{j=1}^{\infty }\frac{(1-q^{12j-1})(1-q^{12j-11})}{(1-q^{12j-5})(1-q^{12j-7})}\end{eqnarray}$$and show that it has many properties that are analogues of corresponding results for Ramanujan’s function $k=k(q)$defined by $$\begin{eqnarray}k=q\mathop{\prod }_{j=1}^{\infty }\frac{(1-q^{10j-1})(1-q^{10j-2})(1-q^{10j-8})(1-q^{10j-9})}{(1-q^{10j-3})(1-q^{10j-4})(1-q^{10j-6})(1-q^{10j-7})}.\end{eqnarray}$$
Details
- Language :
- English
- ISSN :
- 14467887 and 14468107
- Volume :
- 101
- Issue :
- 1
- Database :
- Supplemental Index
- Journal :
- Journal of the Australian Mathematical Society
- Publication Type :
- Periodical
- Accession number :
- ejs39488847
- Full Text :
- https://doi.org/10.1017/S1446788715000531