Back to Search Start Over

THE LEVEL 12 ANALOGUE OF RAMANUJAN’S FUNCTION $k$

Authors :
COOPER, SHAUN
YE, DONGXI
Source :
Journal of the Australian Mathematical Society; August 2016, Vol. 101 Issue: 1 p29-53, 25p
Publication Year :
2016

Abstract

We provide a comprehensive study of the function $h=h(q)$defined by $$\begin{eqnarray}h=q\mathop{\prod }_{j=1}^{\infty }\frac{(1-q^{12j-1})(1-q^{12j-11})}{(1-q^{12j-5})(1-q^{12j-7})}\end{eqnarray}$$and show that it has many properties that are analogues of corresponding results for Ramanujan’s function $k=k(q)$defined by $$\begin{eqnarray}k=q\mathop{\prod }_{j=1}^{\infty }\frac{(1-q^{10j-1})(1-q^{10j-2})(1-q^{10j-8})(1-q^{10j-9})}{(1-q^{10j-3})(1-q^{10j-4})(1-q^{10j-6})(1-q^{10j-7})}.\end{eqnarray}$$

Details

Language :
English
ISSN :
14467887 and 14468107
Volume :
101
Issue :
1
Database :
Supplemental Index
Journal :
Journal of the Australian Mathematical Society
Publication Type :
Periodical
Accession number :
ejs39488847
Full Text :
https://doi.org/10.1017/S1446788715000531