Back to Search Start Over

Evidence for a 1,3-Dipolar Cyclo-addition Mechanism in the Decarboxylation of Phenylacrylic Acids Catalyzed by Ferulic Acid Decarboxylase

Authors :
Ferguson, Kyle L.
Eschweiler, Joseph D.
Ruotolo, Brandon T.
Marsh, E. Neil G.
Source :
Journal of the American Chemical Society; 20240101, Issue: Preprints
Publication Year :
2024

Abstract

Ferulic acid decarboxylase catalyzes the decarboxylation of phenylacrylic acid using a newly identified cofactor, prenylated flavin mononucleotide (prFMN). The proposed mechanism involves the formation of a putative pentacyclic intermediate formed by a 1,3 dipolar cyclo-addition of prFMN with the α–β double bond of the substrate, which serves to activate the substrate toward decarboxylation. However, enzyme-catalyzed 1,3 dipolar cyclo-additions are unprecedented and other mechanisms are plausible. Here we describe the use of a mechanism-based inhibitor, 2-fluoro-2-nitrovinylbenzene, to trap the putative cyclo-addition intermediate, thereby demonstrating that prFMN can function as a dipole in a 1,3 dipolar cyclo-addition reaction as the initial step in a novel type of enzymatic reaction.

Details

Language :
English
ISSN :
00027863 and 15205126
Issue :
Preprints
Database :
Supplemental Index
Journal :
Journal of the American Chemical Society
Publication Type :
Periodical
Accession number :
ejs42870701
Full Text :
https://doi.org/10.1021/jacs.7b05060