Back to Search Start Over

RETRACTED ARTICLE: LINC01410-miR-532-NCF2-NF-kB feedback loop promotes gastric cancer angiogenesis and metastasis

Authors :
Zhang, Jia-Xing
Chen, Zhen-Hua
Chen, Dong-Liang
Tian, Xiao-Peng
Wang, Chen-Yuan
Zhou, Zhi-Wei
Gao, Ying
Xu, Yi
Chen, Cui
Zheng, Zhou-San
Weng, Hui-Wen
Ye, Sheng
Kuang, Ming
Xie, Dan
Peng, Sui
Source :
Oncogene; May 2018, Vol. 37 Issue: 20 p2660-2675, 16p
Publication Year :
2018

Abstract

Dysregulation of non-coding RNAs, including miRNAs and lncRNAs has been reported to play vital roles in gastric cancer (GC) carcinogenesis, but the mechanism involved is largely unknown. Using the cancer genome atlas (TCGA) data set and bioinformatics analyses, we identified miR-532-5p as a potential tumor suppressor in GC, and found that lncRNA LINC01410 might be a negative regulator of miR-532-5p. We then conducted a series of in vivo and in vitro assays to explore the effect of LINC01410 on miR-532-5p-mediated GC malignancy and the underlying mechanism involved. MiR-532-5p overexpression inhibited GC metastasis and angiogenesis in vitro and in vivo, whereas miR-532-5p silencing had the opposite effect. Further study showed that miR-532-5p attenuated NF-κB signaling by directly inhibiting NCF2 expression, while miR-532-5p silencing in GC enhanced NF-κB activity. Furthermore, we demonstrated miR-532-5p down-regulation was caused by aberrantly high expression of LINC01410 in GC. Mechanistically, overexpression of LINC01410 promoted GC angiogenesis and metastasis by binding to and suppressing miR-532-5p, which resulted in up-regulation of NCF2 and sustained NF-κB pathway activation. Interestingly, NCF2 could in turn increase the promoter activity and expression of LINC01410 via NF-κB, thus forming a positive feedback loop that drives the malignant behavior of GC. Finally, high expression of LINC01410, along with low expression of miR-532-5p, was associated with poor survival outcome in GC patients. Our studies uncover a mechanism for constitutive LINC1410-miR-532-5p-NCF2-NF-κB feedback loop activation in GC, and consequently, as a potential therapeutic target in GC treatment.

Details

Language :
English
ISSN :
09509232 and 14765594
Volume :
37
Issue :
20
Database :
Supplemental Index
Journal :
Oncogene
Publication Type :
Periodical
Accession number :
ejs44927557
Full Text :
https://doi.org/10.1038/s41388-018-0162-y