Back to Search Start Over

Rapid and accurate interpretation of clinical exomes using Phenoxome: a computational phenotype-driven approach

Authors :
Wu, Chao
Devkota, Batsal
Evans, Perry
Zhao, Xiaonan
Baker, Samuel W.
Niazi, Rojeen
Cao, Kajia
Gonzalez, Michael A.
Jayaraman, Pushkala
Conlin, Laura K.
Krock, Bryan L.
Deardorff, Matthew A.
Spinner, Nancy B.
Krantz, Ian D.
Santani, Avni B.
Tayoun, Ahmad N. Abou
Sarmady, Mahdi
Source :
European Journal of Human Genetics: EJHG; April 2019, Vol. 27 Issue: 4 p612-620, 9p
Publication Year :
2019

Abstract

Clinical exome sequencing (CES) has become the preferred diagnostic platform for complex pediatric disorders with suspected monogenic etiologies. Despite rapid advancements, the major challenge still resides in identifying the casual variants among the thousands of variants detected during CES testing, and thus establishing a molecular diagnosis. To improve the clinical exome diagnostic efficiency, we developed Phenoxome, a robust phenotype-driven model that adopts a network-based approach to facilitate automated variant prioritization. Phenoxome dissects the phenotypic manifestation of a patient in concert with their genomic profile to filter and then prioritize variants that are likely to affect the function of the gene (potentially pathogenic variants). To validate our method, we have compiled a clinical cohort of 105 positive patient samples that represent a wide range of genetic heterogeneity. Phenoxome identifies the causative variants within the top 5, 10, or 25 candidates in more than 50%, 71%, or 88% of these exomes, respectively. Furthermore, we show that our method is optimized for clinical testing by outperforming the current state-of-art method. We have demonstrated the performance of Phenoxome using a clinical cohort and showed that it enables rapid and accurate interpretation of clinical exomes. Phenoxome is available at https://phenoxome.chop.edu/.

Details

Language :
English
ISSN :
10184813 and 14765438
Volume :
27
Issue :
4
Database :
Supplemental Index
Journal :
European Journal of Human Genetics: EJHG
Publication Type :
Periodical
Accession number :
ejs48072227
Full Text :
https://doi.org/10.1038/s41431-018-0328-7