Back to Search Start Over

Insertion and Confinement of H2O in Hydrophobic Siliceous Zeolites at High Pressure

Authors :
Santoro, Mario
Veremeienko, Vasyl
Polisi, Michelangelo
Fantini, Riccardo
Alabarse, Frederico
Arletti, Rossella
Quatieri, Simona
Svitlyk, Volodymyr
van der Lee, Arie
Rouquette, Jérôme
Alonso, Bruno
Di Renzo, Francesco
Coasne, Benoît
Haines, Julien
Source :
The Journal of Physical Chemistry - Part C; July 2019, Vol. 123 Issue: 28 p17432-17439, 8p
Publication Year :
2019

Abstract

The insertion of H2O in the siliceous zeolites TON (Theta-one) and MFI (Mobil Five) was studied at pressures up to 0.9 GPa by synchrotron X-ray diffraction, infrared spectroscopy, and Monte Carlo modeling. TON (orthorhombic, Cmc21) and MFI (monoclinic, P21/n) have 1D and 3D pore systems, respectively. H2O insertion was quantified by a combination of structure refinements and Monte Carlo modeling. Complete pore filling is observed at 0.9 GPa in the high-pressure forms of TON (orthorhombic, Pbn21) and MFI (orthorhombic, Pnma). This corresponds to more than twice as many H2O molecules per SiO2unit in the 3D pore system of MFI than in the 1D pore system of TON. This results in a greater swelling of the MFI system as compared to the TON system upon insertion. In both cases, both experiments and modeling indicate that the density of water in the pores is close to that of bulk water at the same pressure. A greater degree of molecular disorder is observed in the 3D H2O network of MFI. Infrared spectroscopy indicates a weakening of the hydrogen bonds associated with geometrical constraints because of confinement. The majority of the H2O molecules are extruded on pressure release, indicating that this insertion is reversible to a great extent, which gives rise to the molecular spring properties of these materials.

Details

Language :
English
ISSN :
19327447 and 19327455
Volume :
123
Issue :
28
Database :
Supplemental Index
Journal :
The Journal of Physical Chemistry - Part C
Publication Type :
Periodical
Accession number :
ejs50464696
Full Text :
https://doi.org/10.1021/acs.jpcc.9b04860