Back to Search Start Over

The U1 spliceosomal RNA is recurrently mutated in multiple cancers

Authors :
Shuai, Shimin
Suzuki, Hiromichi
Diaz-Navarro, Ander
Nadeu, Ferran
Kumar, Sachin A.
Gutierrez-Fernandez, Ana
Delgado, Julio
Pinyol, Magda
López-Otín, Carlos
Puente, Xose S.
Taylor, Michael D.
Campo, Elías
Stein, Lincoln D.
Source :
Nature; October 2019, Vol. 574 Issue: 7780 p712-716, 5p
Publication Year :
2019

Abstract

Cancers are caused by genomic alterations known as drivers. Hundreds of drivers in coding genes are known but, to date, only a handful of noncoding drivers have been discovered—despite intensive searching1,2. Attention has recently shifted to the role of altered RNA splicing in cancer; driver mutations that lead to transcriptome-wide aberrant splicing have been identified in multiple types of cancer, although these mutations have only been found in protein-coding splicing factors such as splicing factor 3b subunit 1 (SF3B1)3–6. By contrast, cancer-related alterations in the noncoding component of the spliceosome—a series of small nuclear RNAs (snRNAs)—have barely been studied, owing to the combined challenges of characterizing noncoding cancer drivers and the repetitive nature of snRNA genes1,7,8. Here we report a highly recurrent A>C somatic mutation at the third base of U1 snRNA in several types of tumour. The primary function of U1 snRNA is to recognize the 5′ splice site via base-pairing. This mutation changes the preferential A–U base-pairing between U1 snRNA and the 5′ splice site to C–G base-pairing, and thus creates novel splice junctions and alters the splicing pattern of multiple genes—including known drivers of cancer. Clinically, the A>C mutation is associated with heavy alcohol use in patients with hepatocellular carcinoma, and with the aggressive subtype of chronic lymphocytic leukaemia with unmutated immunoglobulin heavy-chain variable regions. The mutation in U1 snRNA also independently confers an adverse prognosis to patients with chronic lymphocytic leukaemia. Our study demonstrates a noncoding driver in spliceosomal RNAs, reveals a mechanism of aberrant splicing in cancer and may represent a new target for treatment. Our findings also suggest that driver discovery should be extended to a wider range of genomic regions.

Details

Language :
English
ISSN :
00280836 and 14764687
Volume :
574
Issue :
7780
Database :
Supplemental Index
Journal :
Nature
Publication Type :
Periodical
Accession number :
ejs51384795
Full Text :
https://doi.org/10.1038/s41586-019-1651-z