Back to Search Start Over

Quantum supremacy using a programmable superconducting processor

Authors :
Arute, Frank
Arya, Kunal
Babbush, Ryan
Bacon, Dave
Bardin, Joseph C.
Barends, Rami
Biswas, Rupak
Boixo, Sergio
Brandao, Fernando G. S. L.
Buell, David A.
Burkett, Brian
Chen, Yu
Chen, Zijun
Chiaro, Ben
Collins, Roberto
Courtney, William
Dunsworth, Andrew
Farhi, Edward
Foxen, Brooks
Fowler, Austin
Gidney, Craig
Giustina, Marissa
Graff, Rob
Guerin, Keith
Habegger, Steve
Harrigan, Matthew P.
Hartmann, Michael J.
Ho, Alan
Hoffmann, Markus
Huang, Trent
Humble, Travis S.
Isakov, Sergei V.
Jeffrey, Evan
Jiang, Zhang
Kafri, Dvir
Kechedzhi, Kostyantyn
Kelly, Julian
Klimov, Paul V.
Knysh, Sergey
Korotkov, Alexander
Kostritsa, Fedor
Landhuis, David
Lindmark, Mike
Lucero, Erik
Lyakh, Dmitry
Mandrà, Salvatore
McClean, Jarrod R.
McEwen, Matthew
Megrant, Anthony
Mi, Xiao
Michielsen, Kristel
Mohseni, Masoud
Mutus, Josh
Naaman, Ofer
Neeley, Matthew
Neill, Charles
Niu, Murphy Yuezhen
Ostby, Eric
Petukhov, Andre
Platt, John C.
Quintana, Chris
Rieffel, Eleanor G.
Roushan, Pedram
Rubin, Nicholas C.
Sank, Daniel
Satzinger, Kevin J.
Smelyanskiy, Vadim
Sung, Kevin J.
Trevithick, Matthew D.
Vainsencher, Amit
Villalonga, Benjamin
White, Theodore
Yao, Z. Jamie
Yeh, Ping
Zalcman, Adam
Neven, Hartmut
Martinis, John M.
Source :
Nature; October 2019, Vol. 574 Issue: 7779 p505-510, 6p
Publication Year :
2019

Abstract

The promise of quantum computers is that certain computational tasks might be executed exponentially faster on a quantum processor than on a classical processor1. A fundamental challenge is to build a high-fidelity processor capable of running quantum algorithms in an exponentially large computational space. Here we report the use of a processor with programmable superconducting qubits2–7to create quantum states on 53 qubits, corresponding to a computational state-space of dimension 253(about 1016). Measurements from repeated experiments sample the resulting probability distribution, which we verify using classical simulations. Our Sycamore processor takes about 200 seconds to sample one instance of a quantum circuit a million times—our benchmarks currently indicate that the equivalent task for a state-of-the-art classical supercomputer would take approximately 10,000 years. This dramatic increase in speed compared to all known classical algorithms is an experimental realization of quantum supremacy8–14for this specific computational task, heralding a much-anticipated computing paradigm.

Details

Language :
English
ISSN :
00280836 and 14764687
Volume :
574
Issue :
7779
Database :
Supplemental Index
Journal :
Nature
Publication Type :
Periodical
Accession number :
ejs51520768
Full Text :
https://doi.org/10.1038/s41586-019-1666-5