Back to Search Start Over

Magnetic Reconnection in Three Dimensions: Modeling and Analysis of Electromagnetic Drift Waves in the Adjacent Current Sheet

Authors :
Ergun, R. E.
Hoilijoki, S.
Ahmadi, N.
Schwartz, S. J.
Wilder, F. D.
Drake, J. F.
Hesse, M.
Shay, M. A.
Ji, H.
Yamada, M.
Graham, D. B.
Cassak, P. A.
Swisdak, M.
Burch, J. L.
Torbert, R. B.
Holmes, J. C.
Stawarz, J. E.
Goodrich, K. A.
Eriksson, S.
Strangeway, R. J.
LeContel, O.
Source :
Journal of Geophysical Research - Space Physics; December 2019, Vol. 124 Issue: 12 p10085-10103, 19p
Publication Year :
2019

Abstract

We present a model of electromagnetic drift waves in the current sheet adjacent to magnetic reconnection at the subsolar magnetopause. These drift waves are potentially important in governing 3‐D structure of subsolar magnetic reconnection and in generating turbulence. The drift waves propagate nearly parallel to the X line and are confined to a thin current sheet. The scale size normal to the current sheet is significantly less than the ion gyroradius and can be less than or on the order of the wavelength. The waves also have a limited extent along the magnetic field (B), making them a three‐dimensional eigenmode structure. In the current sheet, the background magnitudes of Band plasma density change significantly, calling for a treatment that incorporates an inhomogeneous plasma environment. Using detailed examination of Magnetospheric Multiscale observations, we find that the waves are best represented by series of electron vortices, superimposed on a primary electron drift, that propagate along the current sheet (parallel to the X line). The waves displace or corrugate the current sheet, which also potentially displaces the electron diffusion region. The model is based on fluid behavior of electrons, but ion motion must be treated kinetically. The strong electron drift along the X line is likely responsible for wave growth, similar to a lower hybrid drift instability. Contrary to a classical lower hybrid drift instability, however, the strong changes in the background Band no, the normal confinement to the current sheet, and the confinement along Bare critical to the wave description. Drift waves are potentially important in governing 3D structure of subsolar magnetic reconnection and in generating turbulenceDrift waves displace or corrugate the current sheet and potentially displace the electron diffusion region of magnetic reconnectionParallel electric fields arise in the drift waves

Details

Language :
English
ISSN :
21699380 and 21699402
Volume :
124
Issue :
12
Database :
Supplemental Index
Journal :
Journal of Geophysical Research - Space Physics
Publication Type :
Periodical
Accession number :
ejs52168010
Full Text :
https://doi.org/10.1029/2019JA027275