Back to Search Start Over

Use of Functional Magnetic Resonance Imagingto Assess How Motor Phenotypes of Parkinson's Disease Respond to Deep Brain Stimulation

Authors :
DiMarzio, Marisa
Madhavan, Radhika
Joel, Suresh
Hancu, Ileana
Fiveland, Eric
Prusik, Julia
Gillogly, Michael
Rashid, Tanweer
MacDonell, Jacquelyn
Ashe, Jeffrey
Telkes, Ilknur
Feustel, Paul
Staudt, Michael D
Shin, Damian S.
Durphy, Jennifer
Hwang, Roy
Hanspal, Era
Pilitsis, Julie G.
Source :
Neuromodulation; June 2020, Vol. 23 Issue: 4 p515-524, 10p
Publication Year :
2020

Abstract

Deep brain stimulation (DBS) is a well‐accepted treatment of Parkinson's disease (PD). Motor phenotypes include tremor‐dominant (TD), akinesia‐rigidity (AR), and postural instability gait disorder (PIGD). The mechanism of action in how DBS modulates motor symptom relief remains unknown. Blood oxygen level‐dependent (BOLD) functional magnetic resonance imaging (fMRI) was used to determine whether the functional activity varies in response to DBS depending on PD phenotypes. Subjects underwent an fMRI scan with DBS cycling ON and OFF. The effects of DBS cycling on BOLD activation in each phenotype were documented through voxel‐wise analysis. For each region of interest, ANOVAs were performed using T‐values and covariate analyses were conducted. Further, a correlation analysis was performed comparing stimulation settings to T‐values. Lastly, T‐values of subjects with motor improvement were compared to those who worsened. As a group, BOLD activation with DBS‐ON resulted in activation in the motor thalamus (p< 0.01) and globus pallidus externa (p< 0.01). AR patients had more activation in the supplementary motor area (SMA) compared to PIGD (p< 0.01) and TD cohorts (p< 0.01). Further, the AR cohort had more activation in primary motor cortex (MI) compared to the TD cohort (p= 0.02). Implanted nuclei (p= 0.01) and phenotype (p= <0.01) affected activity in MI and phenotype alone affected SMA activity (p= <0.01). A positive correlation was seen between thalamic activation and pulse‐width (p= 0.03) and between caudate and total electrical energy delivered (p= 0.04). These data suggest that DBS modulates network activity differently based on patient motor phenotype. Improved understanding of these differences may further our knowledge about the mechanisms of DBS action on PD motor symptoms and to optimize treatment.

Details

Language :
English
ISSN :
10947159 and 15251403
Volume :
23
Issue :
4
Database :
Supplemental Index
Journal :
Neuromodulation
Publication Type :
Periodical
Accession number :
ejs53503787
Full Text :
https://doi.org/10.1111/ner.13160