Back to Search Start Over

Enhanced Performance of ZnO/SiO2/Al2O3Surface Acoustic Wave Devices with Embedded Electrodes

Authors :
Su, Rongxuan
Fu, Sulei
Shen, Junyao
Chen, Zhenglin
Lu, Zengtian
Yang, Mingliang
Wang, Rui
Zeng, Fei
Wang, Weibiao
Song, Cheng
Pan, Feng
Source :
ACS Applied Materials & Interfaces; September 2020, Vol. 12 Issue: 37 p42378-42385, 8p
Publication Year :
2020

Abstract

With the advent of the 5G era, surface acoustic wave (SAW) devices with a larger bandwidth and better temperature stability are strongly required, meanwhile the dimensions of devices are continuously scaling down. In this work, a new layout of ZnO/SiO2/Al2O3SAW devices with embedded electrodes was developed, and with the help of the finite element method (FEM), the propagation characteristics were simulated. Through adopting embedded electrodes, a large electromechanical coupling coefficient (K2) of 6.6% for the Rayleigh mode can be achieved (5 times larger than that of the conventional ZnO/Al2O3structure), feasible for wideband SAW devices, and a low acoustic velocity (Vp) of 2960 m/s is exhibited simultaneously, which benefits the miniaturization of SAW devices. The dramatic enhancement of K2is mainly attributed to the more efficient excitation of SAW in piezoelectric films. Furthermore, a SiO2overlay is added on the top of the structure to gain an excellent zero temperature coefficient of frequency (TCF). Experimentally, we successfully fabricated SAW one-port resonators based on the proposed structure and good characteristics of high K2, low Vp, and small TCF as simulated were confirmed. Our results show that the proposed structure provides a viable route to design SAW devices with a large bandwidth, small size, and robust temperature compensation for practical use.

Details

Language :
English
ISSN :
19448244
Volume :
12
Issue :
37
Database :
Supplemental Index
Journal :
ACS Applied Materials & Interfaces
Publication Type :
Periodical
Accession number :
ejs54050032
Full Text :
https://doi.org/10.1021/acsami.0c12055