Back to Search
Start Over
A Model for <inline-formula> <tex-math notation="LaTeX">$R(t)$ </tex-math></inline-formula> Elements and <inline-formula> <tex-math notation="LaTeX">$R(t)$ </tex-math></inline-formula>-Based Spike-Timing-Dependent Plasticity With Basic Circuit Examples
- Source :
- IEEE Transactions on Neural Networks and Learning Systems; October 2020, Vol. 31 Issue: 10 p4206-4216, 11p
- Publication Year :
- 2020
-
Abstract
- Spike-timing-dependent plasticity (STDP) is a fundamental synaptic learning rule observed in biology that leads to numerous behavioral and cognitive outcomes. Emulating STDP in electronic spiking neural networks with high-density memristive synapses is, therefore, of significant interest. While one popular method involves pulse-shaping the spiking neuron output voltages, an alternative approach is outlined in this article. The proposed STDP implementation uses time-varying dynamic resistance [<inline-formula> <tex-math notation="LaTeX">${R}$ </tex-math></inline-formula>(<inline-formula> <tex-math notation="LaTeX">${t}$ </tex-math></inline-formula>)] elements to achieve local synaptic learning from spike-pair STDP, spike triplet STDP, and firing rates. The <inline-formula> <tex-math notation="LaTeX">${R}$ </tex-math></inline-formula>(<inline-formula> <tex-math notation="LaTeX">${t}$ </tex-math></inline-formula>) elements are connected to each neuron circuit, thereby maintaining synaptic density and leveraging voltage division as a means of altering synaptic weight (memristor voltage). Example <inline-formula> <tex-math notation="LaTeX">${R}$ </tex-math></inline-formula>(<inline-formula> <tex-math notation="LaTeX">${t}$ </tex-math></inline-formula>) elements with their corresponding behaviors are demonstrated through simulation. A three-input-two-output network using single-memristor synaptic connections and <inline-formula> <tex-math notation="LaTeX">${R}$ </tex-math></inline-formula>(<inline-formula> <tex-math notation="LaTeX">${t}$ </tex-math></inline-formula>) elements is also simulated. Network-level effects, such as nonspecific synaptic plasticity, are discussed. Finally, spatiotemporal pattern recognition (STPR) using <inline-formula> <tex-math notation="LaTeX">${R}$ </tex-math></inline-formula>(<inline-formula> <tex-math notation="LaTeX">${t}$ </tex-math></inline-formula>) elements is demonstrated in simulation.
Details
- Language :
- English
- ISSN :
- 2162237x and 21622388
- Volume :
- 31
- Issue :
- 10
- Database :
- Supplemental Index
- Journal :
- IEEE Transactions on Neural Networks and Learning Systems
- Publication Type :
- Periodical
- Accession number :
- ejs54367237
- Full Text :
- https://doi.org/10.1109/TNNLS.2019.2952768