Back to Search Start Over

A Model for <inline-formula> <tex-math notation="LaTeX">$R(t)$ </tex-math></inline-formula> Elements and <inline-formula> <tex-math notation="LaTeX">$R(t)$ </tex-math></inline-formula>-Based Spike-Timing-Dependent Plasticity With Basic Circuit Examples

Authors :
Ivans, Robert C.
Dahl, Sumedha Gandharava
Cantley, Kurtis D.
Source :
IEEE Transactions on Neural Networks and Learning Systems; October 2020, Vol. 31 Issue: 10 p4206-4216, 11p
Publication Year :
2020

Abstract

Spike-timing-dependent plasticity (STDP) is a fundamental synaptic learning rule observed in biology that leads to numerous behavioral and cognitive outcomes. Emulating STDP in electronic spiking neural networks with high-density memristive synapses is, therefore, of significant interest. While one popular method involves pulse-shaping the spiking neuron output voltages, an alternative approach is outlined in this article. The proposed STDP implementation uses time-varying dynamic resistance [&lt;inline-formula&gt; &lt;tex-math notation=&quot;LaTeX&quot;&gt;${R}$ &lt;/tex-math&gt;&lt;/inline-formula&gt;(&lt;inline-formula&gt; &lt;tex-math notation=&quot;LaTeX&quot;&gt;${t}$ &lt;/tex-math&gt;&lt;/inline-formula&gt;)] elements to achieve local synaptic learning from spike-pair STDP, spike triplet STDP, and firing rates. The &lt;inline-formula&gt; &lt;tex-math notation=&quot;LaTeX&quot;&gt;${R}$ &lt;/tex-math&gt;&lt;/inline-formula&gt;(&lt;inline-formula&gt; &lt;tex-math notation=&quot;LaTeX&quot;&gt;${t}$ &lt;/tex-math&gt;&lt;/inline-formula&gt;) elements are connected to each neuron circuit, thereby maintaining synaptic density and leveraging voltage division as a means of altering synaptic weight (memristor voltage). Example &lt;inline-formula&gt; &lt;tex-math notation=&quot;LaTeX&quot;&gt;${R}$ &lt;/tex-math&gt;&lt;/inline-formula&gt;(&lt;inline-formula&gt; &lt;tex-math notation=&quot;LaTeX&quot;&gt;${t}$ &lt;/tex-math&gt;&lt;/inline-formula&gt;) elements with their corresponding behaviors are demonstrated through simulation. A three-input-two-output network using single-memristor synaptic connections and &lt;inline-formula&gt; &lt;tex-math notation=&quot;LaTeX&quot;&gt;${R}$ &lt;/tex-math&gt;&lt;/inline-formula&gt;(&lt;inline-formula&gt; &lt;tex-math notation=&quot;LaTeX&quot;&gt;${t}$ &lt;/tex-math&gt;&lt;/inline-formula&gt;) elements is also simulated. Network-level effects, such as nonspecific synaptic plasticity, are discussed. Finally, spatiotemporal pattern recognition (STPR) using &lt;inline-formula&gt; &lt;tex-math notation=&quot;LaTeX&quot;&gt;${R}$ &lt;/tex-math&gt;&lt;/inline-formula&gt;(&lt;inline-formula&gt; &lt;tex-math notation=&quot;LaTeX&quot;&gt;${t}$ &lt;/tex-math&gt;&lt;/inline-formula&gt;) elements is demonstrated in simulation.

Details

Language :
English
ISSN :
2162237x and 21622388
Volume :
31
Issue :
10
Database :
Supplemental Index
Journal :
IEEE Transactions on Neural Networks and Learning Systems
Publication Type :
Periodical
Accession number :
ejs54367237
Full Text :
https://doi.org/10.1109/TNNLS.2019.2952768