Back to Search Start Over

Dual-Mode Chiral Self-Assembly of Cone-Shaped Subphthalocyanine Aromatics

Authors :
Mayoral, María J.
Guilleme, Julia
Calbo, Joaquín
Aragó, Juan
Aparicio, Fátima
Ortí, Enrique
Torres, Tomás
González-Rodríguez, David
Source :
Journal of the American Chemical Society; December 2020, Vol. 142 Issue: 50 p21017-21031, 15p
Publication Year :
2020

Abstract

Columnar polymers and liquid crystals obtained from π-conjugated cone-shaped molecules are receiving increasing interest due to the possibility of obtaining unconventional polar organizations that show anisotropic charge transport and unique chiroptical properties. However, and in contrast to the more common planar discotics, the self-assembly of conic or pyramidic molecules in solution remains largely unexplored. Here, we show how a molecular geometry change, from flat to conic, can generate supramolecular landscapes where different self-assembled species, each of them being under thermodynamic equilibrium with the monomer, exist exclusively within distinct regimes. In particular, depending on the solvent nature–aromatic or aliphatic–cone-shaped C3-symmetric subphthalocyanine 1can undergo self-assembly either as a tail-to-tail dimer, showing monomer–dimer sigmoidal transitions, or as a head-to-tail noncentrosymmetric columnar polymer, exhibiting a nucleation-elongation polymerization mechanism. Moreover, the experimental and theoretical comparison between racemic and enantiopure samples revealed that the two enantiomers (1Mand 1P) tend to narcissistically self-sort in the dimer regime, each enantiomer showing a strong preference to associate with itself, but socially self-sort in the polymer regime, favoring an alternate stacking order along the columns.

Details

Language :
English
ISSN :
00027863 and 15205126
Volume :
142
Issue :
50
Database :
Supplemental Index
Journal :
Journal of the American Chemical Society
Publication Type :
Periodical
Accession number :
ejs54626136
Full Text :
https://doi.org/10.1021/jacs.0c07291