Back to Search Start Over

Room Temperature Wafer-Scale Synthesis of Highly Transparent, Conductive CuS Nanosheet Films via a Simple Sulfur Adsorption-Corrosion Method

Authors :
Hong, John
Kim, Byung-Sung
Hou, Bo
Pak, Sangyeon
Kim, Taehun
Jang, A-Rang
Cho, Yuljae
Lee, Sanghyo
An, Geon-Hyoung
Jang, Jae Eun
Morris, Stephen M.
Sohn, Jung Inn
Cha, SeungNam
Source :
ACS Applied Materials & Interfaces; January 2021, Vol. 13 Issue: 3 p4244-4252, 9p
Publication Year :
2021

Abstract

The development of highly conductive electrodes with robust mechanical durability and clear transmittance in the visible to IR spectral range is of great importance for future wearable/flexible electronic applications. In particular, low resistivity, robust flexibility, and wide spectral transparency have a significant impact on optoelectronic performance. Herein, we introduce a new class of covellite copper monosulfide (CuS) nanosheet films as a promising candidate for soft transparent conductive electrodes (TCEs). An atmospheric sulfur adsorption-corrosion phenomenon represents a key approach in our work for the achievement of wafer-scale CuS nanosheet films through systematic control of the neat Cu layer thickness ranging from 2 to 10 nm multilayers at room temperature. These nanosheet films provide outstanding conductivity (∼25 Ω sq–1) and high transparency (> 80%) in the visible to infrared region as well as distinct flexibility and long stability under air exposure, yielding a high figure-of-merit (∼60) that is comparable to that of conventional rigid metal oxide material-based TCEs. Our unique room temperature synthesis process delivers high quality CuS nanosheets on any arbitrary substrates in a short time (< 1 min) scale, thus guaranteeing the widespread use of highly producible and scalable device fabrication.

Details

Language :
English
ISSN :
19448244
Volume :
13
Issue :
3
Database :
Supplemental Index
Journal :
ACS Applied Materials & Interfaces
Publication Type :
Periodical
Accession number :
ejs55637863
Full Text :
https://doi.org/10.1021/acsami.0c21957