Back to Search Start Over

Hybridization with Ti3C2TxMXene: An Effective Approach to Boost the Hydrothermal Stability and Catalytic Performance of Metal–Organic Frameworks

Authors :
Gu, Chen
Lu, Cong
Gao, Yu-Xia
Tan, Peng
Peng, Song-Song
Liu, Xiao-Qin
Sun, Lin-Bing
Source :
Inorganic Chemistry; February 2021, Vol. 60 Issue: 3 p1380-1387, 8p
Publication Year :
2021

Abstract

Metal–organic frameworks (MOFs) have attracted increasing research enthusiasm owing to their tunable functionality, diverse structure characteristics, and large surface area. However, poor hydrothermal stability restricts the utilization of some MOFs in practical applications. Our work aims at improving the hydrothermal stability of a representative MOF, namely, HKUST-1, by incorporating a two-dimensional material Ti3C2TxMXene for the first time. A new type of hybrid material is synthesized through the hybridization of HKUST-1 and Ti3C2Tx, and the obtained hybrids show improved hydrothermal stability as well as catalytic performance. The porosity of hybrids is enhanced when incorporating an appropriate amount of Ti3C2Tx,and the surface area can reach 1380 m2·g–1, while the pristine HKUST-1 is 1210 m2·g–1. After the hydrothermal treatment (hot water vapor, 70 °C), the structure of hybrid materials maintains well, while the framework of HKUST-1 is severely destroyed. When catalyzing the ring-opening reaction of styrene oxide, the conversion reaches 76.7% only for 20 min, which is much higher than that of pure HKUST-1 (23.1% for 20 min). More importantly, the catalytic activity could recover without loss even after six cycles. Our hybrid materials are promising in practical catalytic applications due to their excellent hydrothermal stability, catalytic activity, and reusability.

Details

Language :
English
ISSN :
00201669 and 1520510X
Volume :
60
Issue :
3
Database :
Supplemental Index
Journal :
Inorganic Chemistry
Publication Type :
Periodical
Accession number :
ejs55638446
Full Text :
https://doi.org/10.1021/acs.inorgchem.0c02589